Globaler MLOP-Markt – Branchentrends und Prognose bis 2031

Inhaltsverzeichnis anfordernInhaltsverzeichnis anfordern Mit Analyst sprechen Mit Analyst sprechen Jetzt kaufenJetzt kaufen Vor dem Kauf anfragen Vorher anfragen Kostenloser Beispielbericht Kostenloser Beispielbericht

Globaler MLOP-Markt – Branchentrends und Prognose bis 2031

  • ICT
  • Upcoming Reports
  • Apr 2024
  • Global
  • 350 Seiten
  • Anzahl der Tabellen: 220
  • Anzahl der Abbildungen: 60

Global Mlops Market

Marktgröße in Milliarden USD

CAGR :  % Diagram

Diagramm Prognosezeitraum
2024 –2031
Diagramm Marktgröße (Basisjahr)
USD 7.62 Billion
Diagramm Marktgröße (Prognosejahr)
USD 11.69 Billion
Diagramm CAGR
%
Diagramm Wichtige Marktteilnehmer
  • Dummy1
  • Dummy2
  • Dummy3
  • Dummy4
  • Dummy5

>Globaler MLOP-Markt nach Komponente (Plattform, Dienst), Bereitstellungsmodus (vor Ort, Cloud, Hybrid), Unternehmensgröße (Großunternehmen, kleine und mittlere Unternehmen (KMU)), Branchenvertikalen (Finanzdienstleistungen (BFSI), Fertigung, Informationstechnologie (IT) und Telekommunikation, Einzelhandel und E-Commerce , Gesundheitswesen, Sonstige) – Branchentrends und Prognose bis 2031.

MLOPs Marktanalyse und Größe

Machine Learning Operations (MLOps) bezeichnet eine Reihe von Verfahren und Tools, die zur Optimierung und Automatisierung der Bereitstellung, Überwachung und Verwaltung von Machine Learning-Modellen in Produktionsumgebungen eingesetzt werden. MLOps zielt darauf ab, die Lücke zwischen der Entwicklung und Bereitstellung von Machine Learning-Modellen zu schließen, indem Konsistenz, Zuverlässigkeit und Skalierbarkeit über den gesamten Lebenszyklus des Machine Learnings hinweg sichergestellt werden.

Data Bridge Market Research analysiert, dass der globale MLOP-Markt, der im Jahr 2023 7,62 Milliarden USD betrug, bis 2031 voraussichtlich 11,69 Milliarden USD erreichen und im Prognosezeitraum von 2024 bis 2031 eine durchschnittliche jährliche Wachstumsrate (CAGR) von 5,5 % aufweisen wird. Zusätzlich zu den Markteinblicken wie Marktwert, Wachstumsrate, Marktsegmenten, geografischer Abdeckung, Marktteilnehmern und Marktszenario enthält der vom Data Bridge Market Research-Team zusammengestellte Marktbericht eine eingehende Expertenanalyse, Import-/Exportanalyse, Preisanalyse, Produktionsverbrauchsanalyse und PESTLE-Analyse.

Berichtsumfang und Marktsegmentierung

Berichtsmetrik

Details

Prognosezeitraum

2024 bis 2031

Basisjahr

2023

Historische Jahre

2022 (Angepasst 2016 bis 2021)

Quantitative Einheiten

Umsatz in Mrd. USD, Volumen in Einheiten, Preise in USD

Abgedeckte Segmente

Komponente (Plattform, Service), Bereitstellungsmodus (vor Ort, Cloud, Hybrid), Unternehmensgröße (Großunternehmen, kleine und mittlere Unternehmen (KMU)), Branchen (Finanzdienstleistungen (BFSI), Fertigung, Informationstechnologie (IT) und Telekommunikation, Einzelhandel und E-Commerce, Gesundheitswesen, Sonstige)

Abgedeckte Länder

USA, Kanada, Mexiko, Brasilien, Argentinien, Restliches Südamerika, Deutschland, Italien, Großbritannien, Frankreich, Spanien, Niederlande, Belgien, Schweiz, Türkei, Russland, Restliches Europa, Japan, China, Indien, Südkorea, Australien, Singapur, Malaysia, Thailand, Indonesien, Philippinen, Restlicher Asien-Pazifik-Raum, Saudi-Arabien, Vereinigte Arabische Emirate, Südafrika, Ägypten, Israel, Restlicher Naher Osten und Afrika

Abgedeckte Marktteilnehmer

Databricks (USA), Domino Data Lab (USA), Kubeflow (von Google) (USA), Amazon SageMaker (USA), Paperspace Gradient (USA), Fiddler AI (USA), MLflow (von Databricks) (USA), Valohai (Finnland), Pachyderm (USA), ZenML (Deutschland)

Marktchancen

  • Steigende Nachfrage nach KI und maschinellem Lernen
  • Wachsender Fokus auf Demokratisierung von MLOps

Marktdefinition

MLOps umfasst eine Reihe von Lösungen und Services, die den gesamten Lebenszyklus des maschinellen Lernens optimieren, von der Modellentwicklung und Schulung bis hin zur Bereitstellung, Überwachung und Verwaltung. Diese MLOps-Tools schließen die Lücke zwischen Datenwissenschaft und Produktion und gewährleisten effiziente Arbeitsabläufe, optimierte Modellleistung und die reibungslose Integration von Modellen des maschinellen Lernens in reale Anwendungen in verschiedenen Branchen.

MLOPs Marktdynamik

Treiber

  • Wachsende Nachfrage nach verbesserter Modell-Governance und Erklärbarkeit

Die wachsende Nachfrage nach verbesserter Modell-Governance und Erklärbarkeit ist ein wichtiger Treiber, der den globalen MLOps-Markt (Machine Learning Operations) vorantreibt. Da Unternehmen zunehmend Machine-Learning-Modelle in ihre Abläufe integrieren, wird zunehmend Wert darauf gelegt, die Zuverlässigkeit, Transparenz und Verantwortlichkeit dieser Modelle sicherzustellen. Eine verbesserte Modell-Governance beinhaltet die Festlegung strenger Richtlinien und Kontrollen zur Verwaltung des gesamten Lebenszyklus von Machine-Learning-Modellen und berücksichtigt Aspekte wie Versionskontrolle, Compliance und Risikomanagement. Darüber hinaus treibt der Bedarf an verbesserter Erklärbarkeit die Entwicklung von Tools und Techniken zur Interpretation von Modellentscheidungen voran, die den Beteiligten Einblicke in das Modellverhalten bieten und fundierte Entscheidungen ermöglichen. Diese Betonung von Governance und Erklärbarkeit unterstreicht die entscheidende Rolle, die MLOps-Lösungen bei der Förderung von Vertrauen, Compliance und Zuverlässigkeit bei Machine-Learning-Implementierungen spielen und so das Marktwachstum ankurbeln.

  • Steigende Cloud-Akzeptanz und Skalierbarkeit

Die zunehmende Verbreitung von Cloud Computing und das Streben nach Skalierbarkeit sind entscheidende Treiber für den globalen MLOps-Markt (Machine Learning Operations). Da Unternehmen zunehmend Cloud-Plattformen nutzen, um ihre Machine-Learning-Infrastruktur zu hosten, entsteht ein dringender Bedarf an MLOps-Lösungen, die sich nahtlos in Cloud-Umgebungen integrieren lassen und die Bereitstellung und Verwaltung skalierbarer Modelle erleichtern. Cloudbasierte MLOps-Dienste bieten beispiellose Flexibilität und ermöglichen es Unternehmen, ihre Machine-Learning-Operationen schnell als Reaktion auf schwankende Nachfrage zu skalieren und gleichzeitig die Zusammenarbeit, Versionskontrolle und Ressourcenoptimierung zu optimieren. Infolgedessen unterstreicht die Konvergenz von zunehmender Cloud-Verwendung und Skalierbarkeitsanforderungen die unverzichtbare Rolle von MLOps-Lösungen bei der Orchestrierung effizienter, agiler und skalierbarer Machine-Learning-Workflows auf globaler Ebene.

Gelegenheiten

  • Integration mit neuen Technologien

Die Integration neuer Technologien bietet dem globalen MLOps-Markt große Chancen. Da sich neue Technologien wie künstliche Intelligenz (KI), Edge Computing, Internet der Dinge (IoT) und Blockchain ständig weiterentwickeln, entsteht ein ergänzender Bedarf an fortschrittlichen MLOps-Lösungen, die sich nahtlos in diese neuen Technologien integrieren lassen. Durch die Nutzung von MLOps-Tools und -Praktiken können Unternehmen die Effizienz, Zuverlässigkeit und Skalierbarkeit ihrer KI- und Machine-Learning-Initiativen in verschiedenen Bereichen verbessern. Durch die Integration neuer Technologien können MLOps-Plattformen komplexe Anwendungsfälle wie Echtzeitanalysen, vorausschauende Wartung, autonome Systeme und personalisierte Benutzererlebnisse bewältigen und so neue Wege für Innovation und Wettbewerbsdifferenzierung auf dem Markt eröffnen.

  • Zunehmender Fokus auf KMU und Einzelentwickler

Der wachsende Fokus auf kleine und mittlere Unternehmen (KMU) und einzelne Entwickler stellt eine bedeutende Chance für den globalen MLOps-Markt dar. Da die Einführung von maschinellem Lernen und KI über große Unternehmen hinausgeht, suchen KMU und einzelne Entwickler zunehmend nach zugänglichen und kostengünstigen MLOps-Lösungen, die auf ihre spezifischen Bedürfnisse und Ressourcenbeschränkungen zugeschnitten sind. MLOps-Anbieter bedienen dieses wachsende Marktsegment und erschließen sich einen riesigen Pool potenzieller Kunden, die maschinelle Lernfunktionen zur Verbesserung ihrer Produkte, Dienstleistungen und Abläufe nutzen möchten. Darüber hinaus kann die Bereitstellung benutzerfreundlicher MLOps-Plattformen für KMU und einzelne Entwickler den Zugang zu fortschrittlicher Analytik und Automatisierung demokratisieren, Innovationen fördern und eine breitere Einführung von Technologien für maschinelles Lernen in verschiedenen Branchen und Anwendungen vorantreiben.

Einschränkungen/Herausforderungen

  • Steigende Datensicherheitsrisiken

Die zunehmenden Datensicherheitsrisiken stellen eine erhebliche Herausforderung für den globalen MLOP-Markt dar. Mit der zunehmenden Verbreitung sensibler Daten, die in maschinellen Lernvorgängen verwendet werden, darunter personenbezogene Informationen und proprietäre Geschäftsdaten, wird das Potenzial für Datenverletzungen, unbefugten Zugriff und böswillige Angriffe immer größer. Um die Vertraulichkeit, Integrität und Verfügbarkeit von Daten während des gesamten MLOps-Lebenszyklus, von der Schulung bis zur Bereitstellung und darüber hinaus, zu gewährleisten, sind robuste Sicherheitsmaßnahmen und die Einhaltung strenger Compliance-Standards erforderlich. Die Komplexität von MLOps-Workflows in Verbindung mit der verteilten Natur der Datenverarbeitung und -speicherung erschwert jedoch die Sicherheitsbemühungen und erhöht die Anfälligkeit für Cyberbedrohungen.

  • Komplexität von MLOps-Tools

Die mit MLOps-Tools verbundene Komplexität stellt eine große Herausforderung für den globalen MLOps-Markt dar. Diese Tools bieten zwar erweiterte Funktionen für die Verwaltung und Bereitstellung von Modellen des maschinellen Lernens, ihre Komplexität stellt jedoch häufig Hindernisse für die Einführung dar, insbesondere für Organisationen, denen es an Fachwissen oder Ressourcen mangelt. Komplexe MLOps-Tools erfordern möglicherweise umfangreiche Schulungen und technische Kenntnisse, um sie effektiv zu nutzen, was zu längeren Implementierungszeiten, höheren Kosten und einem erhöhten Fehlerrisiko führt. Darüber hinaus verschärft das schnelle Innovationstempo im MLOps-Bereich diese Herausforderung noch, da Organisationen Schwierigkeiten haben, mit sich entwickelnden Technologien und Best Practices Schritt zu halten.

Dieser Marktbericht enthält Einzelheiten zu neuen Entwicklungen, Handelsvorschriften, Import-Export-Analysen, Produktionsanalysen, Wertschöpfungskettenoptimierungen, Marktanteilen, dem Einfluss inländischer und lokaler Marktteilnehmer, analysiert Chancen in Bezug auf neu entstehende Einnahmequellen, Änderungen der Marktvorschriften, strategische Marktwachstumsanalysen, Marktgröße, Kategoriemarktwachstum, Anwendungsnischen und -dominanz, Produktzulassungen, Produkteinführungen, geografischen Expansionen und technologischen Innovationen auf dem Markt. Um weitere Informationen über den Markt zu erhalten, wenden Sie sich an Data Bridge Market Research, um ein Analyst Briefing zu erhalten. Unser Team hilft Ihnen dabei, eine fundierte Marktentscheidung zu treffen, um Marktwachstum zu erzielen.

Jüngste Entwicklungen

  • Im Mai 2021 startete Google Cloud Vertex AI, eine verwaltete Machine-Learning-Plattform, die verschiedene Dienste zum Erstellen, Trainieren und Bereitstellen von Machine-Learning-Modellen integriert und so den KI-Entwicklungszyklus vereinfacht. Ziel dieser Initiative war es, die Prozesse zur Modellentwicklung und -bereitstellung zu optimieren, damit Unternehmen die KI-Einführung beschleunigen und Geschäftsziele effizient erreichen können.
  • Im September 2019 brachte DataRobot nach der Übernahme von ParallelM seine MLOps-Lösung auf den Markt. Sie integrierte Modellverwaltungs- und Überwachungsfunktionen für die zentrale Bereitstellung, Überwachung und Steuerung von Machine-Learning-Modellen in Unternehmen und verbesserte so letztlich die Effizienz der KI-Bereitstellung. Diese Initiative zielte darauf ab, die Herausforderungen zu bewältigen, denen sich Unternehmen gegenübersehen, wenn es darum geht, aus KI-Projekten messbaren Nutzen zu ziehen, indem sie eine umfassende Lösung für die Automatisierung und Verwaltung des gesamten Machine-Learning-Lebenszyklus bereitstellte.

Globaler MLOPs-Marktumfang

Der Markt ist nach Komponenten, Bereitstellungsmodus, Unternehmensgröße und Branchen segmentiert. Das Wachstum dieser Segmente hilft Ihnen bei der Analyse schwacher Wachstumssegmente in den Branchen und bietet den Benutzern einen wertvollen Marktüberblick und Markteinblicke, die ihnen bei der strategischen Entscheidungsfindung zur Identifizierung der wichtigsten Marktanwendungen helfen.

Komponente

  • Plattform
  • Service

Bereitstellungsmodus

  • Vor Ort
  • Wolke
  • Hybrid

Größe der Organisation

  • Große Unternehmen
  • Kleine und mittlere Unternehmen (KMU)

Branchen

  • Finanzdienstleistungen (BFSI)
  • Herstellung
  • Informationstechnologie (IT) und Telekommunikation
  • Einzelhandel und E-Commerce
  • Gesundheitspflege
  • Sonstiges

MLOPs Marktregionenanalyse/Einblicke

Der Markt wird analysiert und es werden Einblicke in die Marktgröße und Trends nach Region, Komponente, Bereitstellungsmodus, Organisationsgröße und Branchenvertikalen bereitgestellt, wie oben angegeben.

Die vom Markt abgedeckten Regionen sind Nordamerika, Südamerika, Europa, Asien-Pazifik sowie der Nahe Osten und Afrika. Die im globalen MLOPs-Marktbericht abgedeckten Länder sind die USA, Kanada, Mexiko, Brasilien, Argentinien, der Rest von Südamerika, Deutschland, Italien, Großbritannien, Frankreich, Spanien, Niederlande, Belgien, Schweiz, Türkei, Russland, Rest von Europa, Japan, China, Indien, Südkorea, Australien, Singapur, Malaysia, Thailand, Indonesien, Philippinen, Rest von Asien-Pazifik, Saudi-Arabien, Vereinigte Arabische Emirate, Südafrika, Ägypten, Israel, Rest des Nahen Ostens und Afrika.

Nordamerika dominiert den globalen MLOps-Markt aus mehreren Gründen. Die Region verfügt über ein robustes Ökosystem aus Technologieunternehmen, Forschungseinrichtungen und qualifizierten Fachkräften, die auf maschinelles Lernen und Datenwissenschaft spezialisiert sind, was Innovationen fördert und die Marktführerschaft vorantreibt. Darüber hinaus ist Nordamerika die Heimat vieler führender Cloud-Dienstleister, die skalierbare Infrastruktur und fortschrittliche MLOps-Lösungen anbieten, die den unterschiedlichsten Geschäftsanforderungen gerecht werden. Darüber hinaus fördert das starke regulatorische Umfeld der Region in Verbindung mit einem reifen Unternehmensmarkt die weit verbreitete Einführung von MLOps-Praktiken, um Compliance, Governance und Risikomanagement sicherzustellen. Darüber hinaus fördern die Unternehmerkultur und das Risikokapital-Ökosystem Nordamerikas das schnelle Wachstum von Startups und aufstrebenden Akteuren im MLOps-Bereich und tragen zur Dominanz der Region auf dem Weltmarkt bei. Insgesamt positioniert die Konvergenz von technologischem Know-how, unterstützender Infrastruktur, regulatorischen Rahmenbedingungen und unternehmerischer Dynamik Nordamerika als Vorreiter bei der Förderung und Einführung von MLOps weltweit.

Der asiatisch-pazifische Raum erweist sich aufgrund mehrerer Schlüsselfaktoren als die am schnellsten wachsende Region auf dem globalen MLOPs-Markt. Die Region erlebt eine rasante digitale Transformation in verschiedenen Branchen, die die Einführung von Technologien für maschinelles Lernen und KI vorantreibt, um die Geschäftseffizienz und Wettbewerbsfähigkeit zu steigern. Da Unternehmen im asiatisch-pazifischen Raum zunehmend die strategische Bedeutung datengesteuerter Erkenntnisse erkennen, besteht eine wachsende Nachfrage nach MLOps-Lösungen, um die Entwicklung, Bereitstellung und Verwaltung von Modellen für maschinelles Lernen zu optimieren.

Der regionale Abschnitt des Berichts enthält auch Angaben zu einzelnen marktbeeinflussenden Faktoren und Änderungen der Regulierung auf dem Inlandsmarkt, die sich auf die aktuellen und zukünftigen Trends des Marktes auswirken. Datenpunkte wie die Analyse der nachgelagerten und vorgelagerten Wertschöpfungskette, technische Trends und die Fünf-Kräfte-Analyse von Porter sowie Fallstudien sind einige der Anhaltspunkte, die zur Prognose des Marktszenarios für einzelne Länder verwendet werden. Bei der Bereitstellung einer Prognoseanalyse der regionalen Daten werden auch die Präsenz und Verfügbarkeit globaler Marken und die Herausforderungen berücksichtigt, die sich aufgrund der großen oder geringen Konkurrenz durch lokale und inländische Marken, der Einfluss inländischer Zölle und Handelsrouten ergeben.   

Wettbewerbsumfeld und MLOPs Marktanteilsanalyse

Die Wettbewerbslandschaft des Marktes liefert Einzelheiten zu den Wettbewerbern. Zu den enthaltenen Einzelheiten gehören Unternehmensübersicht, Unternehmensfinanzen, erzielter Umsatz, Marktpotenzial, Investitionen in Forschung und Entwicklung, neue Marktinitiativen, globale Präsenz, Produktionsstandorte und -anlagen, Produktionskapazitäten, Stärken und Schwächen des Unternehmens, Produkteinführung, Produktbreite und -umfang sowie Anwendungsdominanz. Die oben angegebenen Datenpunkte beziehen sich nur auf den Fokus der Unternehmen in Bezug auf den Markt.

Einige der wichtigsten Akteure auf dem Markt sind:

  • Databricks (USA)
  • Domino Data Lab (USA)
  • Kubeflow (von Google) (USA)
  • Amazon SageMaker (USA)
  • Papierbereich-Farbverlauf (US)
  • Fiddler AI (USA)
  • MLflow (von Databricks) (USA)
  • Valohai (Finnland)
  • Dickhäuter (USA)
  • ZenML (Deutschland)


SKU-

Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud

  • Interaktives Datenanalyse-Dashboard
  • Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
  • Zugriff für Research-Analysten für Anpassungen und Abfragen
  • Konkurrenzanalyse mit interaktivem Dashboard
  • Aktuelle Nachrichten, Updates und Trendanalyse
  • Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Demo anfordern

Forschungsmethodik

Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.

Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.

Anpassung möglich

Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.

Häufig gestellte Fragen

The MLOPs market size will be worth USD 11.69 billion by 2031.
The growth rate of the MLOPs market is 5.5%.
Growing Demand for Improved Model Governance and Explainability & Rising Cloud Adoption and Scalability are the growth drivers of the MLOPs market.
Component, deployment mode , organization size, and industry verticals are the factors on which the MLOPs market research is based.
Major companies in the MLOPs market are Databricks (U.S.), Domino Data Lab (U.S.), Kubeflow (by Google) (U.S.), Amazon SageMaker (U.S.), Paperspace Gradient (U.S.), Fiddler AI (U.S.), MLflow (by Databricks) (U.S.), Valohai (Finland), Pachyderm (U.S.), ZenML (Germany).