Global Machine Learning Chip Market
Marktgröße in Milliarden USD
CAGR : %
Prognosezeitraum |
2022 –2029 |
Marktgröße (Basisjahr) | USD 1.78 Million |
Marktgröße (Prognosejahr) | USD 2.45 Million |
CAGR |
|
Wichtige Marktteilnehmer |
|
>Globaler Markt für Chips für maschinelles Lernen, nach Chiptyp (GPU, ASIC, FPGA, CPU, andere), Technologie (System-on-Chip, System-in-Package, Multi-Chip-Modul, andere), Branchenvertikale (Medien und Werbung, BFSI, IT und Telekommunikation, Einzelhandel, Gesundheitswesen, Automobil und Transport, andere) – Branchentrends und Prognose bis 2029.
Marktanalyse und Größe
Chips für maschinelles Lernen werden in vielen Branchen zur Fehlervermeidung und Kosteneinsparung eingesetzt, darunter in der Automobilindustrie, im Transportwesen, in der Fertigung, in Medien und Werbung sowie im Finanzwesen. Die Hardware-Infrastruktur umfasst Speicher, Computer, Komponenten und Netzwerke.
Der globale Markt für Chips für maschinelles Lernen wurde im Jahr 2021 auf 1,78 Milliarden USD geschätzt und soll bis 2029 144,24 Milliarden USD erreichen, was einer durchschnittlichen jährlichen Wachstumsrate von 41,10 % im Prognosezeitraum 2022–2029 entspricht. System-on-Chip stellt das größte Technologiesegment im jeweiligen Markt dar, da diese Technologie von Anbietern häufig zur Kostensenkung eingesetzt wird. Der vom Marktforschungsteam von Data Bridge zusammengestellte Marktbericht umfasst eine eingehende Expertenanalyse, Import-/Exportanalyse, Preisanalyse, Produktionsverbrauchsanalyse und PESTLE-Analyse.
Marktdefinition
Maschinelles Lernen (ML) wird als Teil der künstlichen Intelligenz (KI) definiert , die im Allgemeinen auf Erfahrungslernen statt auf Programmierung für die Entscheidungsfindung basiert. Diese Chips werden installiert, um Kerne des geistigen Eigentums zu verbessern. Sie helfen dabei, die Ergebnisse von Leistung und Bereich (PPA) durch ML, Leistung, Optimierung und Analyse zu verbessern.
Berichtsumfang und Marktsegmentierung
Berichtsmetrik |
Details |
Prognosezeitraum |
2022 bis 2029 |
Basisjahr |
2021 |
Historische Jahre |
2020 (Anpassbar auf 2019 – 2014) |
Quantitative Einheiten |
Umsatz in Mrd. USD, Volumen in Einheiten, Preise in USD |
Abgedeckte Segmente |
Chiptyp (GPU, ASIC, FPGA, CPU, andere), Technologie ( System-on-Chip , System-in-Package, Multi-Chip-Modul, andere), Branchenvertikale (Medien und Werbung, BFSI, IT und Telekommunikation, Einzelhandel, Gesundheitswesen, Automobil und Transport, andere) |
Abgedeckte Länder |
USA, Kanada und Mexiko in Nordamerika, Deutschland, Frankreich, Großbritannien, Niederlande, Schweiz, Belgien, Russland, Italien, Spanien, Türkei, Restliches Europa in Europa, China, Japan, Indien, Südkorea, Singapur, Malaysia, Australien, Thailand, Indonesien, Philippinen, Restlicher Asien-Pazifik-Raum (APAC) im Asien-Pazifik-Raum (APAC), Saudi-Arabien, Vereinigte Arabische Emirate, Israel, Ägypten, Südafrika, Restlicher Naher Osten und Afrika (MEA) als Teil des Nahen Ostens und Afrikas (MEA), Brasilien, Argentinien und Restliches Südamerika als Teil von Südamerika. |
Abgedeckte Marktteilnehmer |
Google Inc (USA), Amazon Web Services, Inc. (USA), Advanced Micro Devices, Inc (USA), BitMain Technologies Holding Company (China), Intel Corporation (USA), Xilinx (USA), SAMSUNG (Südkorea), Qualcomm Technologies, Inc. (USA), NVIDIA Corporation (USA), Wave Computing, Inc. (USA), Graphcore (Großbritannien), IBM Corporation (USA), Taiwan Semiconductor Manufacturing Company Limited (Taiwan) und Micron Technology, Inc. (USA), unter anderem |
Marktchancen |
|
Marktdynamik für Chips für maschinelles Lernen
In diesem Abschnitt geht es um das Verständnis der Markttreiber, Vorteile, Chancen, Einschränkungen und Herausforderungen. All dies wird im Folgenden ausführlich erläutert:
Treiber
- Steigender Trend zur Digitalisierung
Der zunehmende Trend zur Digitalisierung sowie die weltweite Expansion der Informationstechnologiebranche (IT) sind einer der Hauptfaktoren für das Wachstum des Marktes für Chips für maschinelles Lernen. Deep-Learning-Algorithmen können verfügbare Datenpunkte automatisch abfangen, was die Genauigkeit und Effizienz des Entscheidungsprozesses verbessert.
- Zunahme von Cyberangriffen
Die zunehmende Zahl von Cyberangriffen ermutigt Branchen, Datenbankmanagement, Betrugserkennungssysteme und Cybersicherheit einzusetzen, um den Markt anzukurbeln.
Integration mit fortschrittlichen Technologien
Die Integration von Big Data Analytics und Cloud Computing, um verschiedenen Branchen erweiterte Dienste anzubieten, beeinflusst den Markt zusätzlich. Die Forschungs- und Entwicklungsaktivitäten (RandD) verbessern Hardware- und Softwareverarbeitungslösungen für Deep Learning.
Darüber hinaus wirken sich die schnelle Urbanisierung, veränderte Lebensstile, ein Anstieg der Investitionen und höhere Verbraucherausgaben positiv auf den Markt für Chips für maschinelles Lernen aus.
Gelegenheiten
Darüber hinaus eröffnet die zunehmende Konzentration auf die Entwicklung menschenbewusster KI-Systeme den Marktakteuren im Prognosezeitraum 2022 bis 2029 lukrative Möglichkeiten. Auch die Einführung von KI in Edge-Geräte wird den Markt weiter ausbauen.
Einschränkungen/Herausforderungen
Andererseits dürften eine geringe Kapitalrendite und ein Mangel an qualifizierten KI-Arbeitskräften das Marktwachstum behindern. Darüber hinaus wird erwartet, dass begrenzte strukturierte Daten den Markt für Chips für maschinelles Lernen im Prognosezeitraum 2022–2029 vor Herausforderungen stellen werden.
Dieser Marktbericht für Chips für maschinelles Lernen enthält Einzelheiten zu neuen Entwicklungen, Handelsvorschriften, Import-Export-Analysen, Produktionsanalysen, Optimierung der Wertschöpfungskette, Marktanteilen, Auswirkungen inländischer und lokaler Marktteilnehmer, analysiert Chancen in Bezug auf neue Einnahmequellen, Änderungen der Marktvorschriften, strategische Marktwachstumsanalysen, Marktgröße, Kategoriemarktwachstum, Anwendungsnischen und -dominanz, Produktzulassungen, Produkteinführungen, geografische Expansionen und technologische Innovationen auf dem Markt. Um weitere Informationen zum Markt für Chips für maschinelles Lernen zu erhalten, wenden Sie sich an Data Bridge Market Research, um einen Analystenbericht zu erhalten. Unser Team hilft Ihnen dabei, eine fundierte Marktentscheidung zu treffen, um Marktwachstum zu erzielen.
Auswirkungen von COVID-19 auf den Markt für Chips für maschinelles Lernen
COVID-19 hatte aufgrund der strengen Ausgangssperren und der sozialen Distanzierung zur Eindämmung der Ausbreitung des Virus negative Auswirkungen auf den Markt für Chips für maschinelles Lernen. Die wirtschaftliche Unsicherheit, die teilweise Schließung von Unternehmen und das geringe Verbrauchervertrauen wirkten sich auf die Nachfrage nach Chips für maschinelles Lernen aus. Die Lieferkette wurde während der Pandemie beeinträchtigt und es kam zu Verzögerungen bei den Logistikaktivitäten. Es wird jedoch erwartet, dass der Markt für Chips für maschinelles Lernen nach der Pandemie aufgrund der Lockerung der Beschränkungen wieder an Fahrt gewinnt.
Jüngste Entwicklungen
- NVIDIA hat im Mai 2020 zwei leistungsstarke Produkte für seine EGX Edge AI-Plattform und EGX A100 für größere kommerzielle Standardserver auf den Markt gebracht. Diese Plattformen sind in der Lage, Serverflotten sicher aus der Ferne bereitzustellen, zu aktualisieren und zu verwalten.
- NVIDIA hat im Mai 2020 die NVIDIA A100 angekündigt, die erste GPU, die auf der NVIDIA Ampere-Architektur basiert. Sie ist bereits in Produktion und wird an Kunden weltweit ausgeliefert. Sie basiert auf Designdurchbrüchen in der NVIDIA Ampere-Architektur und bietet den bislang größten Leistungssprung des Unternehmens.
Globaler Marktumfang und Marktgröße für maschinelle Lernchips
Der Markt für Chips für maschinelles Lernen ist nach Chiptyp, Technologie und Branche segmentiert. Das Wachstum dieser Segmente hilft Ihnen bei der Analyse schwacher Wachstumssegmente in den Branchen und bietet den Benutzern einen wertvollen Marktüberblick und Markteinblicke, die ihnen bei der strategischen Entscheidungsfindung zur Identifizierung der wichtigsten Marktanwendungen helfen.
Chiptyp
- Grafikkarte
- ASIC
- FPGA
- CPU
- Sonstiges
- NPU
- Hybrid-Chip
Technologie
- System-On-Chip
- System-In-Package
- Multi-Chip-Modul
- Sonstiges
Branchenvertikale
- Medien und Werbung
- BFSI
- IT und Telekommunikation
- Einzelhandel
- Gesundheitspflege
- Automobil und Transport
- Sonstiges
Regionale Analyse/Einblicke zum Markt für Chips für maschinelles Lernen
Der Markt für Chips für maschinelles Lernen wird analysiert und es werden Einblicke in die Marktgröße und Trends nach Land, Chiptyp, Technologie und Branche, wie oben angegeben, bereitgestellt.
Die im Marktbericht für Chips für maschinelles Lernen abgedeckten Länder sind die USA, Kanada und Mexiko in Nordamerika, Deutschland, Frankreich, Großbritannien, Niederlande, Schweiz, Belgien, Russland, Italien, Spanien, Türkei, Restliches Europa in Europa, China, Japan, Indien, Südkorea, Singapur, Malaysia, Australien, Thailand, Indonesien, Philippinen, Restlicher asiatisch-pazifischer Raum (APAC) in Asien-Pazifik (APAC), Saudi-Arabien, Vereinigte Arabische Emirate, Israel, Ägypten, Südafrika, Restlicher Naher Osten und Afrika (MEA) als Teil von Naher Osten und Afrika (MEA), Brasilien, Argentinien und Restliches Südamerika als Teil von Südamerika.
Nordamerika dominiert den Markt für Chips für maschinelles Lernen aufgrund der zunehmenden Besorgnis über die Sicherheit kritischer Infrastrukturen und vertraulicher Daten in der Region.
Aufgrund der Einführung hochentwickelter Technologien in der Region wird für Europa im Prognosezeitraum von 2022 bis 2029 ein deutliches Wachstum erwartet.
Der Länderabschnitt des Berichts enthält auch Angaben zu einzelnen marktbeeinflussenden Faktoren und Änderungen der Regulierung auf dem Inlandsmarkt, die sich auf die aktuellen und zukünftigen Trends des Marktes auswirken. Datenpunkte wie Downstream- und Upstream-Wertschöpfungskettenanalysen, technische Trends und Porters Fünf-Kräfte-Analyse sowie Fallstudien sind einige der Anhaltspunkte, die zur Prognose des Marktszenarios für einzelne Länder verwendet werden. Bei der Bereitstellung von Prognoseanalysen der Länderdaten werden auch die Präsenz und Verfügbarkeit globaler Marken und ihre Herausforderungen aufgrund großer oder geringer Konkurrenz durch lokale und inländische Marken sowie die Auswirkungen inländischer Zölle und Handelsrouten berücksichtigt.
Wettbewerbsumfeld und Markt für Chips für maschinelles Lernen
Die Wettbewerbslandschaft auf dem Markt für Chips für maschinelles Lernen liefert Details nach Wettbewerbern. Die enthaltenen Details sind Unternehmensübersicht, Unternehmensfinanzen, erzielter Umsatz, Marktpotenzial, Investitionen in Forschung und Entwicklung, neue Marktinitiativen, globale Präsenz, Produktionsstandorte und -anlagen, Produktionskapazitäten, Stärken und Schwächen des Unternehmens, Produkteinführung, Produktbreite und -umfang, Anwendungsdominanz. Die oben angegebenen Datenpunkte beziehen sich nur auf den Fokus der Unternehmen in Bezug auf den Markt für Chips für maschinelles Lernen.
Einige der wichtigsten Akteure auf dem Markt für Chips für maschinelles Lernen sind
- Google Inc. (USA)
- Amazon Web Services, Inc. (USA)
- Advanced Micro Devices, Inc. (USA)
- BitMain Technologies Holding Company (China)
- Intel Corporation (USA)
- Xilinx (USA), SAMSUNG (Südkorea)
- Qualcomm Technologies, Inc. (USA)
- NVIDIA Corporation (USA)
- Wave Computing, Inc. (USA)
- Graphcore (Großbritannien)
- IBM Corporation (USA)
- Taiwan Semiconductor Manufacturing Company Limited (Taiwan)
- Micron Technology, Inc. (USA)
SKU-
Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud
- Interaktives Datenanalyse-Dashboard
- Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
- Zugriff für Research-Analysten für Anpassungen und Abfragen
- Konkurrenzanalyse mit interaktivem Dashboard
- Aktuelle Nachrichten, Updates und Trendanalyse
- Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Forschungsmethodik
Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.
Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.
Anpassung möglich
Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.