Global High Performance Computing For Automotive Market
Marktgröße in Milliarden USD
CAGR : %
Prognosezeitraum |
2024 –2030 |
Marktgröße (Basisjahr) | |
Marktgröße (Prognosejahr) | USD 9,059,411.97 |
CAGR |
|
Wichtige Marktteilnehmer |
>Globaler Markt für Hochleistungsrechnen für die Automobilindustrie, nach Angebot (Lösung, Software und Services), Bereitstellungsmodell (vor Ort und in der Cloud), Unternehmensgröße (Großunternehmen, kleine und mittlere Unternehmen (KMU)), Berechnungstyp (Parallelrechnen, verteiltes Rechnen und Exascale-Rechnen), Plattform (HPC für Sicherheit und Bewegung, HPC für autonomes Fahren, Karosserie-HPC, Cockpit-HPC und domänenübergreifendes HPC), Fahrzeugtyp (Pkw, leichte Nutzfahrzeuge und schwere Nutzfahrzeuge) – Branchentrends und Prognose bis 2030.
Analyse und Größe des Hochleistungsrechnens für die Automobilindustrie
Die weltweit steigende Nachfrage nach HPC-Forschung ist einer der Hauptfaktoren, die das Wachstum des Marktes für Hochleistungsrechnen vorantreiben. Der steigende Bedarf an effizienter Datenverarbeitung, verbesserter Skalierbarkeit und zuverlässiger Speicherung sowie der wachsende Bedarf an kontinuierlicher Diversifizierung, Expansion der IT-Branche, hocheffizientem Computing und Fortschritten bei der Virtualisierung beschleunigen das Marktwachstum. Der Anstieg der Einführung von Hochleistungsrechnen aufgrund der Fähigkeit von HPC-Systemen, große Datenmengen mit höherer Geschwindigkeit zu verarbeiten, und der hohen Nutzung in verschiedenen Sektoren beeinflussen den Markt zusätzlich.
Data Bridge Market Research analysiert, dass der globale Markt für Hochleistungsrechner für die Automobilindustrie bis 2030 voraussichtlich einen Wert von 9.059.411,97 Tausend USD erreichen wird, was einer durchschnittlichen jährlichen Wachstumsrate von 12,1 % während des Prognosezeitraums entspricht. Der Bericht zum globalen Markt für Hochleistungsrechner für die Automobilindustrie deckt auch umfassend Preisanalysen, Patentanalysen und technologische Fortschritte ab.
Berichtsmetrik |
Details |
Prognosezeitraum |
2023 bis 2030 |
Basisjahr |
2022 |
Historische Jahre |
2021 (anpassbar auf 2015–2020) |
Quantitative Einheiten |
Umsatz in Tausend USD, Preise in USD |
Abgedeckte Segmente |
Angebot (Lösung, Software und Services), Bereitstellungsmodell (vor Ort und in der Cloud), Unternehmensgröße (Großunternehmen, kleine und mittlere Unternehmen (KMU)), Berechnungstyp (Parallel Computing, Distributed Computing und Exascale Computing), Plattform (Safety & Motion HPC, Autonomous Driving HPC, Body HPC, Cockpit HPC und Cross-Domain HPC), Fahrzeugtyp (Pkw, leichte Nutzfahrzeuge und schwere Nutzfahrzeuge) |
Abgedeckte Regionen |
USA, Kanada, Mexiko, Brasilien, Argentinien, Restliches Südamerika, Deutschland, Frankreich, Großbritannien, Russland, Italien, Spanien, Niederlande, Polen, Schweiz, Belgien, Schweden, Türkei, Dänemark, Restliches Europa, Japan, China, Indien, Südkorea, Vietnam, Taiwan, Australien und Neuseeland, Singapur, Malaysia, Thailand, Indonesien, Philippinen, Restlicher Asien-Pazifik-Raum, Saudi-Arabien, Vereinigte Arabische Emirate, Südafrika, Ägypten, Israel, Kuwait, Katar, Restlicher Naher Osten und Afrika |
Abgedeckte Marktteilnehmer |
Hewlett Packard Enterprise Development LP, IBM, Lenovo, NVIDIA Corporation, Advanced Micro Devices, Inc., Microsoft, Taiwan Semiconductor Manufacturing Company Limited, Dell Inc., Fujitsu, Elektrobit, NEC Corporation, Beijing Jingwei Hirain Technologies Co., Inc., NXP Semiconductors, ANSYS, Inc., ESI Group, Super Micro Computer, Inc., Altair Engineering Inc., TotalCAE, Vector Informatik GmbH, MiTAC Computing Technology Corporation, Rescale, Inc. |
Marktdefinition
High-Performance-Computing (HPC) bezeichnet den Einsatz leistungsstarker und spezialisierter Computersysteme, die in der Lage sind, riesige Datenmengen mit unglaublich hoher Geschwindigkeit zu verarbeiten und zu analysieren. Diese Systeme nutzen fortschrittliche Parallelverarbeitungstechniken und nutzen häufig mehrere Prozessoren oder Knoten, die zusammenarbeiten, um komplexe Probleme in der wissenschaftlichen Forschung, technischen Simulationen, Finanzmodellierung, Wettervorhersage und anderen rechenintensiven Aufgaben zu lösen. HPC ermöglicht es Forschern und Fachleuten, Herausforderungen anzugehen, die mit herkömmlichen Computern nicht machbar oder unpraktisch wären, was zu schnelleren Entdeckungen, besseren Erkenntnissen und effizienterer Problemlösung in verschiedenen Bereichen führt.
Globale Hochleistungsrechner für die Automobilindustrie – Marktdynamik
In diesem Abschnitt geht es um das Verständnis der Markttreiber, Vorteile, Chancen, Einschränkungen und Herausforderungen. All dies wird im Folgenden ausführlich erläutert:
Treiber
- Steigende Komplexität und Leistungsanforderungen in der elektronischen Architektur eines Fahrzeugs
Die Mobilität der Zukunft wird dank der Digitalisierung Zugang zu einer Vielzahl neuer Funktionen und Dienste haben. Dies führt jedoch auch zu einem exponentiellen Anstieg der Daten- und Informationsmenge, die verarbeitet werden muss. Die aktuelle Elektrik/Elektronik-Architektur (E/E) hat ihre Belastungsgrenze bereits überschritten. Megatrends in der Automobilindustrie, darunter automatisiertes Fahren, softwaredefinierte Fahrzeuge und vernetzte Mobilität, erfordern immer mehr Intelligenz und Computerkapazität. Die Komplexität und Leistungsfähigkeit der heutigen Elektrik/Elektronik-Architekturen im Automobil sind auf ihrem Maximum. Es braucht viel Rechenleistung, um Konnektivität, drahtlose Updates, automatisiertes und autonomes Fahren und fortschrittliche Fahrerassistenzsysteme (ADAS) zu unterstützen.
- Für die Konstruktion und Erprobung von Fahrzeugen ist eine hohe Rechenleistung erforderlich
High-Performance Computing (HPC) für die Automobilindustrie ist eine verbesserte Art von HPC, die entwickelt wurde, um den Anforderungen der Automobilindustrie in Bezug auf Rechenleistung und Softwarekompatibilität gerecht zu werden. Moderne Fahrzeuge werden mithilfe softwaregestützter Präzisionstechnik hergestellt, die ein hohes Maß an Rechenleistung erfordert. HPC kann die erforderliche Verarbeitungskapazität auf jeder Ebene des Designprozesses bereitstellen, einschließlich Funktionstests und Sicherheitssimulation. Softwarebasierte Funktionen in den Autos selbst erhalten ebenfalls mehr Aufmerksamkeit. Mit einer CASE-Vision (Connected, Autonomous, Shared, Electric) entwickeln sich Autos zu Software-Defined Vehicles (SDVs), bei denen die durch Code ermöglichten Eigenschaften die mechanischen Fähigkeiten miteinander verknüpfen.
Gelegenheit
- Die Einführung Cloud-basierter HPC-Lösungen
Da technologische Entwicklungen Innovationen in den Bereichen Elektromobilität, autonomes Fahren und vernetzte Autos vorantreiben, erlebt die Automobilindustrie einen drastischen Wandel. Automobilunternehmen suchen nach Möglichkeiten, die Produktentwicklung zu beschleunigen, die Fahrzeugleistung zu verbessern und Produktionsprozesse zu optimieren, um in diesem sich schnell verändernden Umfeld wettbewerbsfähig zu bleiben. Die Einführung cloudbasierter High-Performance-Computing-Technologien (HPC) ist eine Strategie, die in letzter Zeit an Bedeutung gewonnen hat. Automobilunternehmen öffnen neue Türen für schnellere, produktivere und kostengünstigere Forschungs-, Design- und Testprozesse, indem sie die Leistungsfähigkeit von Cloud-Computing und modernsten Computerkapazitäten nutzen.
Einschränkung/Herausforderung
- Hohe Kosten für HPC-Geräte
Eines der Haupthindernisse für die Akzeptanz von HPC-Technologien in Autos sind ihre Kosten. Die hohen Kosten für den Kauf und die Wartung von HPC-Systemen können für Automobilunternehmen, insbesondere kleine und mittlere, ein erhebliches Hindernis darstellen. HPC-Systeme verfügen in der Regel über eine große Anzahl von Prozessoren, was die Kosten in die Höhe treiben kann. HPC-Systeme verwenden in der Regel Hochgeschwindigkeitsprozessoren, was die Kosten ebenfalls in die Höhe treiben kann. HPC-Systeme benötigen in der Regel viel Speicher, was die Kosten ebenfalls in die Höhe treiben kann. HPC-Systeme erzeugen viel Wärme, die spezielle Kühlsysteme erfordert. Dies kann die Kosten ebenfalls in die Höhe treiben.
- Umgang mit sensiblen Fahrzeugdaten
Automobilhersteller und Mobilitätsanbieter legen heute großen Wert auf die Sicherheit und den Datenschutz von vernetzten Fahrzeugen. Zu den sensiblen Daten, die über vernetzte Fahrzeuge gesammelt werden, können persönliche Identifikationsinformationen (PII), Standort-, Verhaltens- und Finanzdaten des Kunden sowie geistiges Eigentum im Zusammenhang mit dem Auto und den angebotenen Diensten gehören. Mitarbeiter und Auftragnehmer auf der ganzen Welt haben Zugriff auf diese sensiblen Daten, da sie sich durch viele Umgebungen und Plattformen bewegen, sowohl vor Ort als auch in der Cloud. Aufgrund dieses „Honeypots“ an Informationen sind Hersteller einem hohen Risiko von Cyberangriffen ausgesetzt.
Jüngste Entwicklungen
- Im Januar 2023 gaben NVIDIA Corporation und Hon Hai Technology Group (Foxconn) heute eine strategische Partnerschaft zur Entwicklung automatisierter und autonomer Fahrzeugplattformen bekannt. Im Rahmen der Vereinbarung wird Foxconn als Tier-1-Hersteller elektronische Steuergeräte (ECUs) auf Basis von NVIDIA DRIVE Orin für den weltweiten Automobilmarkt produzieren.
- Im November 2022 kündigte Dell Inc. eine Erweiterung seines High-Performance-Computing-Portfolios (HPC) mit neuer Hardware, Services und einer hybriden Quantencomputing-Lösung an. Die Dell Quantum Computing Solution ermöglicht es Unternehmen, von der verbesserten Rechenleistung der Quantentechnologie zu profitieren. Kunden können dies nutzen, um maschinelles Lernen, die Verarbeitung natürlicher Sprache sowie die Chemie- und Materialsimulation zu beschleunigen.
Globaler Hochleistungsrechnen für den Automobilmarkt
Der globale Markt für Hochleistungsrechner für die Automobilindustrie ist nach Angebot, Bereitstellungsmodell, Unternehmensgröße, Rechentyp, Plattform und Fahrzeugtyp segmentiert. Das Wachstum dieser Segmente hilft Ihnen bei der Analyse schwacher Wachstumssegmente in den Branchen und bietet den Benutzern einen wertvollen Marktüberblick und Markteinblicke, die ihnen bei der strategischen Entscheidungsfindung zur Identifizierung der wichtigsten Marktanwendungen helfen.
Angebot
- Lösung
- Software
- Dienstleistungen
Auf der Grundlage des Angebots wurde der globale Markt für Hochleistungsrechnen für die Automobilindustrie in Lösungen, Software und Dienstleistungen segmentiert.
Bereitstellungsmodell
- Vor Ort
- Wolke
Auf der Grundlage des Bereitstellungsmodells wurde der globale Markt für Hochleistungsrechnen für die Automobilindustrie in „On-Premises“ und „Cloud“ segmentiert.
Größe der Organisation
- Große Unternehmen
- Kleine und mittlere Unternehmen (KMU)
Auf Grundlage der Unternehmensgröße wurde der globale Markt für Hochleistungsrechnen im Automobilbereich in Großunternehmen sowie kleine und mittlere Unternehmen (KMU) segmentiert.
Berechnungstyp
- Paralleles Rechnen
- Verteiltes Rechnen
- Exascale-Computing
Auf der Grundlage des Berechnungstyps wurde der globale Markt für Hochleistungsrechnen für die Automobilindustrie in Parallelrechnen, verteiltes Rechnen und Exascale-Rechnen segmentiert.
Plattform
- Sicherheit & Bewegung HPC
- Autonomes Fahren HPC
- Körper HPC
- Cockpit HPC
- Domänenübergreifendes HPC
Auf der Grundlage der Plattform wurde das globale Hochleistungsrechnen für den Automobilmarkt in HPC für Sicherheit und Bewegung, HPC für autonomes Fahren, HPC für Karosserie, HPC für Cockpit und domänenübergreifendes HPC segmentiert.
Fahrzeugtyp
- Pkw
- Leichtes Nutzfahrzeug
- Schweres Nutzfahrzeug
Auf der Grundlage des Fahrzeugtyps wurde der globale Markt für Hochleistungscomputer für die Automobilindustrie in Personenkraftwagen, leichte Nutzfahrzeuge und schwere Nutzfahrzeuge segmentiert.
Globaler Hochleistungsrechner für den Automobilmarkt – Regionale Analyse/Einblicke
Der globale Markt für Hochleistungsrechnen im Automobilbereich wird analysiert und es werden Einblicke und Trends in die Marktgröße nach Region, Typ, Bereitstellungsmodus, Anwendung und Endbenutzer wie oben angegeben bereitgestellt.
Die im globalen Bericht zum Hochleistungsrechnen für den Automobilmarkt abgedeckten Regionen sind Nordamerika, Südamerika, Europa, Asien-Pazifik, Naher Osten und Afrika. Die Region Asien-Pazifik wird voraussichtlich den globalen Markt für Hochleistungsrechnen für den Automobilmarkt dominieren, was auf verschiedene Faktoren zurückzuführen ist, darunter starke staatliche Unterstützung, erhebliche Investitionen in Forschung und Entwicklung sowie Kooperationen zwischen Hochschulen, Industrie und Forschungseinrichtungen. China dominiert den asiatisch-pazifischen Raum, da das Land massiv in HPC-Infrastruktur und -Forschung investiert hat, um seine technologischen Fähigkeiten und wissenschaftlichen Fortschritte zu verbessern. Darüber hinaus dominieren die USA den nordamerikanischen Raum aufgrund von Faktoren wie der hohen Akzeptanz von HPC-Technologien in Automobilsektoren, die auf HPC angewiesen sind, um die Produktentwicklung zu beschleunigen, wissenschaftliche Entdeckungen zu verbessern und den Betrieb zu optimieren.
Der europäische Markt für Hochleistungsrechnen für die Automobilindustrie verzeichnete im Vergleich zu allen Regionen die höchste Wachstumsrate. Dies ist auf Faktoren wie die zunehmende Verbreitung von Elektrofahrzeugen (EVs) und autonomer Fahrtechnologie zurückzuführen. Deutschland dominiert die Region aufgrund gemeinsamer Bemühungen von Automobilherstellern und HPC-Anbietern, umweltfreundliche, leichte Materialien zu entwickeln und Herstellungsprozesse zu optimieren, um die Nachhaltigkeit zu fördern und die Umweltbelastung zu verringern.
Der regionale Abschnitt des Berichts enthält auch einzelne marktbeeinflussende Faktoren und Änderungen der Marktregulierung, die sich auf die aktuellen und zukünftigen Trends des Marktes auswirken. Datenpunkte wie die Analyse der nachgelagerten und vorgelagerten Wertschöpfungskette, technische Trends und die Fünf-Kräfte-Analyse von Porter sowie Fallstudien sind einige der Anhaltspunkte, die zur Prognose des Marktszenarios für einzelne Länder verwendet werden. Bei der Bereitstellung einer Prognoseanalyse der regionalen Daten werden auch die Präsenz und Verfügbarkeit globaler Marken und ihre Herausforderungen aufgrund großer oder geringer Konkurrenz durch lokale und inländische Marken, die Auswirkungen inländischer Zölle und Handelsrouten berücksichtigt.
Wettbewerbsumfeld und globale Analyse der Marktanteile von High Performance Computing für die Automobilindustrie
Die Wettbewerbslandschaft des globalen Marktes für Hochleistungsrechner für die Automobilindustrie liefert Einzelheiten zu den Wettbewerbern. Die enthaltenen Einzelheiten umfassen Unternehmensübersicht, Unternehmensfinanzen, erzielten Umsatz, Marktpotenzial, Investitionen in Forschung und Entwicklung, neue Marktinitiativen, globale Präsenz, Produktionsstandorte und -anlagen, Produktionskapazitäten, Stärken und Schwächen des Unternehmens, Produkteinführung, Produktbreite und -umfang, Anwendungsdominanz. Die oben angegebenen Datenpunkte beziehen sich nur auf den Fokus der Unternehmen in Bezug auf den globalen Markt für Hochleistungsrechner für die Automobilindustrie.
Zu den wichtigsten Akteuren auf dem globalen Markt für Hochleistungsrechner für die Automobilindustrie zählen unter anderem Hewlett Packard Enterprise Development LP, IBM, Lenovo, NVIDIA Corporation, Advanced Micro Devices, Inc., Microsoft, Taiwan Semiconductor Manufacturing Company Limited, Dell Inc., Fujitsu, Elektrobit, NEC Corporation, Beijing Jingwei Hirain Technologies Co., Inc., NXP Semiconductors, ANSYS, Inc., ESI Group, Super Micro Computer, Inc., Altair Engineering Inc., TotalCAE, Vector Informatik GmbH, MiTAC Computing Technology Corporation, Rescale, Inc. und andere.
SKU-
Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud
- Interaktives Datenanalyse-Dashboard
- Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
- Zugriff für Research-Analysten für Anpassungen und Abfragen
- Konkurrenzanalyse mit interaktivem Dashboard
- Aktuelle Nachrichten, Updates und Trendanalyse
- Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Inhaltsverzeichnis
1 INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATIONS
1.6 MARKETS COVERED
2 MARKET SEGMENTATION
2.1 MARKETS COVERED
2.2 GEOGRAPHICAL SCOPE
2.3 YEARS CONSIDERED FOR THE STUDY
2.4 DBMR TRIPOD DATA VALIDATION MODEL
2.5 PRIMARY INTERVIEWS WITH KEY OPINION LEADERS
2.6 DBMR MARKET POSITION GRID
2.7 VENDOR SHARE ANALYSIS
2.8 MULTIVARIATE MODELING
2.9 OFFERING TIMELINE CURVE
2.1 SECONDARY SOURCES
2.11 ASSUMPTIONS
3 EXECUTIVE SUMMARY
4 PREMIUM INSIGHTS
4.1 COMPANY SHARE ANALYSIS AT COUNTRY LEVEL
4.2 COMPANY COMPARATIVE ANALYSIS
5 MARKET OVERVIEW
5.1 DRIVERS
5.1.1 INCREASING COMPLEXITY AND PERFORMANCE REQUIREMENTS IN THE ELECTRONIC ARCHITECTURE OF A VEHICLE
5.1.2 HIGH COMPUTING POWER REQUIRED FOR DESIGN AND TESTING OF VEHICLES
5.1.3 RISING INTEGRATION OF AI AND ML TECHNOLOGIES IN AUTOMOBILES
5.2 RESTRAINTS
5.2.1 HIGH COST OF HPC EQUIPMENTS
5.3 OPPORTUNITIES
5.3.1 HIGH-PERFORMANCE COMPUTING CAN OPTIMIZE AUTOMOTIVE MANUFACTURING PROCESSES
5.3.2 THE ADOPTION OF CLOUD-BASED HPC SOLUTIONS
5.4 CHALLENGES
5.4.1 HANDLING SENSITIVE AUTOMOTIVE DATA
6 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY OFFERING
6.1 OVERVIEW
6.2 SOLUTION
6.2.1 SERVER
6.2.2 STORAGE
6.2.3 NETWORKING DEVICE
6.3 SOFTWARE
6.4 SERVICES
6.4.1 INTEGRATION AND IMPLEMENTATION
6.4.2 SUPPORT AND MAINTENANCE
6.4.3 DESIGNING AND CONSULTING
7 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY DEPLOYMENT MODEL
7.1 OVERVIEW
7.2 ON PREMISES
7.3 CLOUD
8 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY ORGANIZATION SIZE
8.1 OVERVIEW
8.2 LARGE ENTERPRISES
8.2.1 ON PREMISES
8.2.2 CLOUD
8.3 SMALL AND MEDIUM SIZE ENTERPRISES (SMES)
8.3.1 ON PREMISES
8.3.2 CLOUD
9 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY COMPUTATION TYPE
9.1 OVERVIEW
9.2 PARALLEL COMPUTING
9.3 DISTRIBUTED COMPUTING
9.4 EXASCALE COMPUTING
10 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY PLATFORM
10.1 OVERVIEW
10.2 SAFETY & MOTION HPC
10.3 AUTONOMOUS DRIVING HPC
10.4 BODY HPC
10.5 COCKPIT HPC
10.6 CROSS-DOMAIN HPC
11 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY VEHICLE TYPE
11.1 OVERVIEW
11.2 PASSENGER CAR
11.2.1 BY TYPE
11.2.1.1 SUV
11.2.1.2 HATCHBACK
11.2.1.3 SEDAN
11.2.1.4 COUPE
11.2.1.5 SPORT CAR
11.2.1.6 CONVERTIBLE
11.2.1.7 OTHERS
11.2.2 BY OFFERING
11.2.2.1 SOLUTION
11.2.2.1.1 SERVER
11.2.2.1.2 STORAGE
11.2.2.1.3 NETWORKING DEVICE
11.2.2.2 SOFTWARE
11.2.2.3 SERVICES
11.3 LIGHT COMMERCIAL VEHICLE
11.3.1 BY TYPE
11.3.1.1 VANS
11.3.1.2 PICK UP TRUCKS
11.3.1.3 MINI BUS
11.3.1.4 TOW TRUCK
11.3.1.5 OTHER
11.3.2 BY OFFERING
11.3.2.1 SOLUTION
11.3.2.1.1 SERVER
11.3.2.1.2 STORAGE
11.3.2.1.3 NETWORKING DEVICE
11.3.2.2 SOFTWARE
11.3.2.3 SERVICES
11.4 HEAVY COMMERCIAL VEHICLE
11.4.1 BY TYPE
11.4.1.1 HEAVY TRUCK
11.4.1.1.1 SEMI-TRAILER TRUCK
11.4.1.1.2 BOX TRUCK
11.4.1.2 OTHERS
11.4.2 BY OFFERING
11.4.2.1 SOLUTION
11.4.2.1.1 SERVER
11.4.2.1.2 STORAGE
11.4.2.1.3 NETWORKING DEVICE
11.4.2.2 SOFTWARE
11.4.2.3 SERVICES
12 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION
12.1 OVERVIEW
12.2 ASIA-PACIFIC
12.2.1 CHINA
12.2.2 JAPAN
12.2.3 SOUTH KOREA
12.2.4 INDIA
12.2.5 AUSTRALIA & NEW ZEALAND
12.2.6 SINGAPORE
12.2.7 TAIWAN
12.2.8 THAILAND
12.2.9 INDONESIA
12.2.10 MALAYSIA
12.2.11 PHILIPPINES
12.2.12 VIETNAM
12.2.13 REST OF ASIA-PACIFIC
12.3 NORTH AMERICA
12.3.1 U.S.
12.3.2 CANADA
12.3.3 MEXICO
12.4 EUROPE
12.4.1 GERMANY
12.4.2 FRANCE
12.4.3 U.K.
12.4.4 RUSSIA
12.4.5 ITALY
12.4.6 SPAIN
12.4.7 NETHERLANDS
12.4.8 POLAND
12.4.9 SWITZERLAND
12.4.10 BELGIUM
12.4.11 SWEDEN
12.4.12 TURKEY
12.4.13 DENMARK
12.4.14 REST OF EUROPE
12.5 SOUTH AMERICA
12.5.1 BRAZIL
12.5.2 ARGENTINA
12.5.3 REST OF SOUTH AMERICA
12.6 MIDDLE EAST AND AFRICA
12.6.1 SAUDI ARABIA
12.6.2 U.A.E.
12.6.3 ISRAEL
12.6.4 SOUTH AFRICA
12.6.5 EGYPT
12.6.6 KUWAIT
12.6.7 QATAR
12.6.8 REST OF MIDDLE EAST AND AFRICA
13 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, COMPANY LANDSCAPE
13.1 COMPANY SHARE ANALYSIS: GLOBAL
13.2 COMPANY SHARE ANALYSIS: ASIA PACIFIC
13.3 COMPANY SHARE ANALYSIS: NORTH AMERICA
13.4 COMPANY SHARE ANALYSIS: EUROPE
14 SWOT ANALYSIS
15 COMPANY PROFILE
15.1 HEWLETT PACKARD ENTERPRISE DEVELOPMENT LP
15.1.1 COMPANY SNAPSHOT
15.1.2 REVENUE ANALYSIS
15.1.3 COMPANY SHARE ANALYSIS
15.1.4 PRODUCT PORTFOLIO
15.1.5 RECENT DEVELOPMENTS
15.2 IBM
15.2.1 COMPANY SNAPSHOT
15.2.2 REVENUE ANALYSIS
15.2.3 COMPANY SHARE ANALYSIS
15.2.4 PRODUCT PORTFOLIO
15.2.5 RECENT DEVELOPMENT
15.3 LENOVO
15.3.1 COMPANY SNAPSHOT
15.3.2 REVENUE ANALYSIS
15.3.3 COMPANY SHARE ANALYSIS
15.3.4 PRODUCT PORTFOLIO
15.3.5 RECENT DEVELOPMENTS
15.4 NVIDIA CORPORATION
15.4.1 COMPANY SNAPSHOT
15.4.2 REVENUE ANALYSIS
15.4.3 COMPANY SHARE ANALYSIS
15.4.4 PRODUCT PROTFOLIO
15.4.5 RECENT DEVELOPMENTS
15.5 ADVANCED MICRO DEVICES, INC.
15.5.1 COMPANY SNAPSHOT
15.5.2 REVENUE ANALYSIS
15.5.3 COMPANY SHARE ANALYSIS
15.5.4 PRODUCT PORTFOLIO
15.5.5 RECENT DEVELOPMENTS
15.6 ALTAIR ENGINEERING INC.
15.6.1 COMPANY SNAPSHOT
15.6.2 REVENUE ANALYSIS
15.6.3 PRODUCT PORTFOLIO
15.6.4 RECENT DEVELOPMENTS
15.7 ANSYS, INC
15.7.1 COMPANY SNAPSHOT
15.7.2 REVENUE ANALYSIS
15.7.3 PRODUCT PORTFOLIO
15.7.4 RECENT DEVELOPMENTS
15.8 BEIJING JINGWEI HIRAIN TECHNOLOGIES CO., INC.
15.8.1 COMPANY SNAPSHOT
15.8.2 REVENUE ANALYSIS
15.8.3 PRODUCT PORTFOLIO
15.8.4 RECENT DEVELOPMENTS
15.9 DELL INC.
15.9.1 COMPANY SNAPSHOT
15.9.2 REVENUE ANALYSIS
15.9.3 PRODUCT PORTFOLIO
15.9.4 RECENT DEVELOPMENTS
15.1 ELEKTROBIT
15.10.1 COMPANY SNAPSHOT
15.10.2 SOLUTION PORTFOLIO
15.10.3 RECENT DEVELOPMENTS
15.11 ESI GROUP
15.11.1 COMPANY SNAPSHOT
15.11.2 REVENUE ANALYSIS
15.11.3 PRODUCT PORTFOLIO
15.11.4 RECENT DEVELOPMENT
15.12 FUJITSU
15.12.1 COMPANY SNAPSHOT
15.12.2 REVENUE ANALYSIS
15.12.3 PRODUCT PORTFOLIO
15.12.4 RECENT DEVELOPMENTS
15.13 MICROSOFT
15.13.1 COMPANY SNAPSHOT
15.13.2 REVENUE ANALYSIS
15.13.3 PRODUCT PORTFOLIO
15.13.4 RECENT DEVELOPMENTS
15.14 NEC CORPORATION
15.14.1 COMPANY SNAPSHOT
15.14.2 REVENUE ANALYSIS
15.14.3 PRODUCT PORTFOLIO
15.14.4 RECENT DEVELOPMENTS
15.15 NXP SEMICONDUCTORS
15.15.1 COMPANY SNAPSHOT
15.15.2 REVENUE ANALYSIS
15.15.3 PRODUCT PORTFOLIO
15.15.4 RECENT DEVELOPMENTS
15.16 RESCALE, INC.
15.16.1 COMPANY SNAPSHOT
15.16.2 PRODUCT PORTFOLIO
15.16.3 RECENT DEVELOPMENTS
15.17 SUPER MICRO COMPUTER, INC.
15.17.1 COMPANY SNAPSHOT
15.17.2 REVENUE ANALYSIS
15.17.3 PRODUCT PORTFOLIO
15.17.4 RECENT DEVELOPMENTS
15.18 TAIWAN SEMICONDUCTOR
15.18.1 COMPANY SNAPSHOT
15.18.2 REVENUE ANALYSIS
15.18.3 PRODUCT PORTFOLIO
15.18.4 RECENT DEVELOPMENTS
15.19 TOTALCAE
15.19.1 COMPANY SNAPSHOT
15.19.2 SOLUTION PORTFOLIO
15.19.3 RECENT DEVELOPMENTS
15.2 TYAN
15.20.1 COMPANY SNAPSHOT
15.20.2 PRODUCT PORTFOLIO
15.20.3 RECENT DEVELOPMENTS
15.21 VECTOR INFORMATIK GMBH
15.21.1 COMPANY SNAPSHOT
15.21.2 PRODUCT PORTFOLIO
15.21.3 RECENT DEVELOPMENTS
16 QUESTIONNAIRE
17 RELATED REPORTS
Tabellenverzeichnis
TABLE 1 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY OFFERING, 2021-2030 (USD THOUSAND)
TABLE 2 GLOBAL SOLUTION IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 3 GLOBAL SOLUTION IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY TYPE, 2021-2030 (USD THOUSAND)
TABLE 4 GLOBAL SOFTWARE IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 5 GLOBAL SERVICES IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 6 GLOBAL SERVICES IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY TYPE, 2021-2030 (USD THOUSAND)
TABLE 7 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY DEPLOYMENT MODEL, 2021-2030 (USD THOUSAND)
TABLE 8 GLOBAL ON PREMISES IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 9 GLOBAL CLOUD IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 10 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY ORGANIZATION SIZE, 2021-2030 (USD THOUSAND)
TABLE 11 GLOBAL LARGE ENTERPRISES IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 12 GLOBAL LARGE ENTERPRISES IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY DEPLOYMENT MODEL, 2021-2030 (USD THOUSAND)
TABLE 13 GLOBAL SMALL AND MEDIUM SIZE ENTERPRISES (SMES) IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 14 GLOBAL SMALL AND MEDIUM SIZE ENTERPRISES (SMES) IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY DEPLOYMENT MODEL, 2021-2030 (USD THOUSAND)
TABLE 15 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY COMPUTATION TYPE, 2021-2030 (USD THOUSAND)
TABLE 16 GLOBAL PARALLEL COMPUTING IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 17 GLOBAL DISTRIBUTED COMPUTING IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 18 GLOBAL EXASCALE COMPUTING IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 19 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY PLATFORM, 2021-2030 (USD THOUSAND)
TABLE 20 GLOBAL SAFETY & MOTION HPC IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 21 GLOBAL AUTONOMOUS DRIVING HPC IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 22 GLOBAL BODY HPC IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 23 GLOBAL COCKPIT HPC IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 24 GLOBAL CROSS-DOMAIN HPC IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 25 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY VEHICLE TYPE, 2021-2030 (USD THOUSAND)
TABLE 26 GLOBAL PASSENGER CAR IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 27 GLOBAL PASSENGER CAR IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY TYPE, 2021-2030 (USD THOUSAND)
TABLE 28 GLOBAL PASSENGER CAR IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY OFFERING, 2021-2030 (USD THOUSAND)
TABLE 29 GLOBAL SOLUTION IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY TYPE, 2021-2030 (USD THOUSAND)
TABLE 30 GLOBAL LIGHT COMMERCIAL VEHICLE IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 31 GLOBAL LIGHT COMMERCIAL VEHICLE IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY TYPE, 2021-2030 (USD THOUSAND)
TABLE 32 GLOBAL LIGHT COMMERCIAL VEHICLE IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY OFFERING, 2021-2030 (USD THOUSAND)
TABLE 33 GLOBAL SOLUTION IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY TYPE, 2021-2030 (USD THOUSAND)
TABLE 34 GLOBAL HEAVY COMMERCIAL VEHICLE IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 35 GLOBAL HEAVY COMMERCIAL VEHICLE IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY TYPE, 2021-2030 (USD THOUSAND)
TABLE 36 GLOBAL HEAVY TRUCK IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY TYPE, 2021-2030 (USD THOUSAND)
TABLE 37 GLOBAL HEAVY COMMERCIAL VEHICLE IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY OFFERING, 2021-2030 (USD THOUSAND)
TABLE 38 GLOBAL SOLUTION IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY TYPE, 2021-2030 (USD THOUSAND)
Abbildungsverzeichnis
FIGURE 1 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: SEGMENTATION
FIGURE 2 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: DATA TRIANGULATION
FIGURE 3 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: DROC ANALYSIS
FIGURE 4 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: GLOBAL VS REGIONAL MARKET ANALYSIS
FIGURE 5 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: COMPANY RESEARCH ANALYSIS
FIGURE 6 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: INTERVIEW DEMOGRAPHICS
FIGURE 7 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: DBMR MARKET POSITION GRID
FIGURE 8 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: VENDOR SHARE ANALYSIS
FIGURE 9 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: MULTIVARIATE MODELING
FIGURE 10 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: OFFERING TIMELINE CURVE
FIGURE 11 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: SEGMENTATION
FIGURE 12 INCREASING COMPLEXITY AND PERFORMANCE REQUIREMENT IN ELECTRONICS ARCHITECTURE OF A VEHICLE IS EXPECTED TO DRIVE THE GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET IN THE FORECAST PERIOD OF 2023 TO 2030
FIGURE 13 SOLUTIONS SEGMENT IS EXPECTED TO ACCOUNT FOR THE LARGEST SHARE OF THE GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET IN 2023 & 2030
FIGURE 14 ASIA-PACIFIC IS EXPECTED TO DOMINATE IN THE GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET IN THE FORECAST PERIOD OF 2023 TO 2030
FIGURE 15 EUROPE IS THE FASTEST GROWING MARKET FOR HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE IN THE FORECAST PERIOD OF 2023 TO 2030
FIGURE 16 COMPANY SHARE ANALYSIS AT COUNTRY LEVEL
FIGURE 17 COMPANY COMPARISON
FIGURE 18 DRIVERS, RESTRAINTS, OPPORTUNITIES, AND CHALLENGES OF THE GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET
FIGURE 19 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: BY OFFERING, 2022
FIGURE 20 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: BY DEPLOYMENT MODEL, 2022
FIGURE 21 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: BY ORGANIZATION SIZE, 2022
FIGURE 22 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: BY COMPUTATION TYPE, 2022
FIGURE 23 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: BY PLATFORM, 2022
FIGURE 24 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: BY VEHICLE TYPE, 2022
FIGURE 25 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: SNAPSHOT (2022)
FIGURE 26 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: BY COUNTRY (2022)
FIGURE 27 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: BY COUNTRY (2023 & 2030)
FIGURE 28 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: BY COUNTRY (2022 & 2030)
FIGURE 29 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: BY REGION (2023-2030)
FIGURE 30 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: COMPANY SHARE 2022 (%)
FIGURE 31 ASIA-PACIFIC HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: COMPANY SHARE 2022 (%)
FIGURE 32 NORTH AMERICA HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: COMPANY SHARE 2022 (%)
FIGURE 33 EUROPE HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: COMPANY SHARE 2022 (%)
Forschungsmethodik
Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.
Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.
Anpassung möglich
Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.