Global Fraud Detection Transaction Monitoring Market
Marktgröße in Milliarden USD
CAGR :
%

![]() |
2025 –2032 |
![]() | USD 20.54 Billion |
![]() | USD 99.80 Billion |
![]() |
|
![]() |
Globale Marktsegmentierung für die Überwachung von Transaktionen zur Betrugserkennung nach Angebot (Lösungen und Services), Funktion (KYC/Kunden-Onboarding, Fallmanagement, Watchlist-Screening, Dashboard & Reporting und andere), Bereitstellung (vor Ort und in der Cloud), Organisationsgröße (große Organisationen und kleine und mittlere Organisationen), Anwendung (Zahlungsbetrugserkennung, Geldwäscheerkennung , Schutz vor Kontoübernahme, Verhinderung von Identitätsdiebstahl und andere), Branche (Banken, Finanzdienstleistungen und Versicherungen (BFSI), Einzelhandel , IT und Telekommunikation, Regierung und Verteidigung, Gesundheitswesen, Fertigung, Energie- und Versorgungsunternehmen und andere) – Branchentrends und Prognose bis 2031.
Betrugserkennung, Transaktionsüberwachung, Marktanalyse
Der globale Markt für die Überwachung von Transaktionen zur Betrugserkennung erlebt aufgrund zunehmender Finanztransaktionen und ausgefeilter Cyberbedrohungen ein robustes Wachstum. Fortschrittliche Technologien wie KI und maschinelles Lernen werden integriert, um die Genauigkeit der Betrugserkennung zu verbessern und Fehlalarme zu reduzieren. Der regulatorische Druck und die Notwendigkeit der Einhaltung von Vorschriften treiben die Einführung in allen Branchen voran. Zu den wichtigsten Marktteilnehmern zählen Unternehmen, die auf Cybersicherheit und Datenanalyse spezialisiert sind. Es wird erwartet, dass der Markt weiter wächst, da Unternehmen versuchen, sich vor sich entwickelnden Betrugstaktiken zu schützen.
Betrugserkennung und Transaktionsüberwachung Marktgröße
Der globale Markt für die Überwachung von Transaktionen zur Betrugserkennung wird voraussichtlich von 17,01 Milliarden US-Dollar im Jahr 2023 auf 81,91 Milliarden US-Dollar im Jahr 2031 anwachsen und im Prognosezeitraum 2024 bis 2031 eine durchschnittliche jährliche Wachstumsrate (CAGR) von 21,8 % aufweisen. Neben Markteinblicken wie Marktwert, Wachstumsrate, Marktsegmenten, geografischer Abdeckung, Marktteilnehmern und Marktszenario enthält der vom Marktforschungsteam von Data Bridge zusammengestellte Marktbericht eine eingehende Expertenanalyse, Import-/Exportanalyse, Preisanalyse, Produktionsverbrauchsanalyse und PESTLE-Analyse.
Betrugserkennung Transaktionsüberwachung Markttrends
„Integration von Big Data“
Die Integration von Big Data in die Betrugserkennung ermöglicht es Unternehmen, umfangreiche Datensätze aus verschiedenen Quellen zu analysieren und so Muster zu erkennen, die auf betrügerische Aktivitäten hindeuten. Durch den Einsatz von Big Data-Analysen können Unternehmen verborgene Erkenntnisse gewinnen, die mit herkömmlichen Methoden möglicherweise nicht erkannt werden. Predictive Analytics verbessert diese Fähigkeit, indem es historische Daten nutzt, um potenzielles betrügerisches Verhalten vorherzusehen, bevor es auftritt. Dieser Trend verbessert nicht nur die Erkennungsraten, sondern ermöglicht es Unternehmen auch, vorbeugende Maßnahmen zu ergreifen. Letztendlich verändert die Nutzung von Big Data die Art und Weise, wie Unternehmen an die Betrugsprävention herangehen, und macht sie effektiver und reaktionsschneller.
Berichtsumfang und Marktsegmentierung für die Überwachung von Betrugstransaktionen
Berichtsmetrik |
Betrugserkennung Transaktionsüberwachung Wichtige Markteinblicke |
Abgedeckte Segmente |
|
Abgedeckte Länder |
USA, Kanada, Mexiko, Deutschland, Großbritannien, Frankreich, Italien, Spanien, Russland, Türkei, Niederlande, Norwegen, Finnland, Dänemark, Schweden, Polen, Schweiz, Belgien, Restliches Europa, China, Japan, Indien, Südkorea, Australien, Neuseeland, Indonesien, Thailand, Malaysia, Singapur, Philippinen, Taiwan, Vietnam, Restlicher Asien-Pazifik-Raum, Brasilien, Argentinien, Restliches Südamerika, Vereinigte Arabische Emirate, Saudi-Arabien, Südafrika, Ägypten, Israel, Oman, Bahrain, Kuwait, Katar und Restlicher Naher Osten und Afrika |
Wichtige Marktteilnehmer |
Amazon Web Services, Inc. (USA), LexisNexis (Tochtergesellschaft von Reed Elsevier) (USA), Mastercard (USA), TATA Consultancy Services Limited (Indien), Fiserv, Inc. (USA), SAS Institute Inc. (USA), ACI Worldwide (USA), Oracle (USA), NICE (Israel), FICO (USA), SymphonyAI (USA), UBIQUITY (USA), Verafin Solutions ULC (Tochtergesellschaft von Nasdaq Inc.) (Kanada), GB Group plc („GBG“) (Großbritannien), INFORM SOFTWARE (Deutschland), Quantexa (Großbritannien), Sum and Substance Ltd (Großbritannien), DataVisor, Inc. (USA), Hawk (Deutschland), Featurespace Limited (England), INETCO Systems Ltd. (Kanada), Abra Innovations, Inc. (USA), Seon Technologies Ltd. (Ungarn), Feedzai (Portugal) und Sanction Scanner (Großbritannien) unter anderem |
Marktchancen |
|
Mehrwertdaten |
Neben Markteinblicken wie Marktwert, Wachstumsrate, Marktsegmente, geografische Abdeckung, Marktteilnehmer und Marktszenario enthält der vom Data Bridge Market Research-Team zusammengestellte Marktbericht eine eingehende Expertenanalyse, Import-/Exportanalyse, Preisanalyse, Produktionsverbrauchsanalyse und PESTLE-Analyse. |
Betrugserkennung und Transaktionsüberwachung – Marktdefinition
Betrugserkennung und Transaktionsüberwachung beziehen sich auf die Systeme und Prozesse, die von Finanzinstituten und Unternehmen verwendet werden, um betrügerische Aktivitäten bei Transaktionen zu identifizieren und zu verhindern. Diese Systeme analysieren kontinuierlich Transaktionsdaten, um ungewöhnliche Muster oder Verhaltensweisen zu erkennen, die auf Betrug hinweisen können, wie z. B. unbefugten Zugriff, Geldwäsche oder Identitätsdiebstahl. Der Markt für Lösungen zur Betrugserkennung und Transaktionsüberwachung wird durch das zunehmende Volumen an Online-Transaktionen, die Komplexität der Betrugstaktiken und strenge gesetzliche Anforderungen zur Reduzierung von Finanzkriminalität angetrieben. Unternehmen setzen fortschrittliche Technologien wie KI, maschinelles Lernen und Echtzeitanalysen ein, um die Genauigkeit und Effizienz bei der Identifizierung betrügerischer Aktivitäten zu verbessern, die Einhaltung von Vorschriften sicherzustellen und Vermögenswerte zu schützen.
Betrugserkennung Transaktionsüberwachung Marktdynamik
Treiber
- Steigender Bedarf an robusten Erkennungssystemen, die sich an neue Bedrohungen anpassen können
Da sich Finanzbetrugssysteme ständig weiterentwickeln und immer raffinierter werden, steigt der Bedarf an robusten Betrugserkennungssystemen, die sich effektiv an neue Bedrohungen anpassen können. Herkömmliche Betrugserkennungsmethoden haben oft Schwierigkeiten, mit den raschen Änderungen der Betrugstaktiken Schritt zu halten, sodass Finanzinstitute und Unternehmen fortschrittliche Erkennungssysteme implementieren müssen. Diese Systeme müssen Spitzentechnologien wie künstliche Intelligenz und maschinelles Lernen nutzen, um große Mengen an Transaktionsdaten in Echtzeit zu analysieren und Muster und Anomalien zu identifizieren, die auf betrügerische Aktivitäten hinweisen können.
Für Instanzen,
Im Februar 2024 wurde laut einem Blog der Bill & Melinda Gates Foundation Tazama, eine neue Open-Source-Betrugserkennungssoftware, auf den Markt gebracht, die dabei helfen soll, Finanztransaktionen auf Betrug und Geldwäsche zu überwachen. Diese Software soll die finanzielle Inklusion unterstützen, indem sie eine kostengünstige Lösung für Länder mit niedrigem und mittlerem Einkommen bietet, die oft mit teuren kommerziellen Betrugsschutzsystemen zu kämpfen haben. Tazama ermöglicht es Zentralbanken und Finanzinstituten, ihre Kunden besser zu schützen und die Transaktionsintegrität sicherzustellen. Der Open-Source-Charakter der Software ermöglicht eine globale Zusammenarbeit zur Verbesserung ihrer Fähigkeiten und trägt dem steigenden Bedarf an robusten Erkennungssystemen Rechnung, die sich an sich entwickelnde Bedrohungen anpassen.
- Verstärkter Fokus auf Identitätsprüfung und Authentifizierung
Die verstärkte Betonung von Identitätsüberprüfung und -authentifizierung verändert die Landschaft der Betrugserkennung und Transaktionsüberwachung. Durch die Integration fortschrittlicher Technologien wie biometrische Authentifizierung, Multi-Faktor-Überprüfung und KI-gesteuerte Identitätsanalyse können Finanzinstitute Benutzeridentitäten genauer überprüfen und betrügerische Aktivitäten erkennen. Dieser robuste Ansatz trägt dazu bei, Risiken im Zusammenhang mit unbefugtem Zugriff und betrügerischen Transaktionen zu mindern und die allgemeine Sicherheit und Zuverlässigkeit von Finanzsystemen zu verbessern. Mit der Weiterentwicklung von Identitätsüberprüfungstechnologien werden diese eine entscheidende Rolle bei der Stärkung von Betrugserkennungsmechanismen und der Gewährleistung der Integrität von Transaktionsüberwachungsprozessen spielen.
Zum Beispiel,
Im November 2023 führte Westpac NZ eine fortschrittliche Biometrie-Software des israelischen Cybersicherheitsunternehmens BioCatch ein, um seine Betrugserkennungssysteme zu verbessern. Die Technologie analysierte das Online-Verhalten der Kunden, wie etwa Tippgeschwindigkeit und Touchscreen-Druck, um ungewöhnliche Aktivitäten zu erkennen und Betrug zu verhindern. Westpac begann im September mit der Implementierung von BioCatch und plant, bis Ende des Monats voll einsatzbereit zu sein. Die Bank gab an, im vergangenen Jahr Betrug in zweistelliger Millionenhöhe verhindert zu haben, und betonte, dass sie angesichts immer raffinierterer Betrügereien verstärkt auf Identitätsüberprüfung und Authentifizierung setzt.
Gelegenheiten
- Nutzung von KI- und maschinellen Lernalgorithmen zur Verbesserung der Genauigkeit
Der Einsatz von KI- und maschinellen Lernalgorithmen verbessert die Genauigkeit der Betrugserkennung und der Transaktionsüberwachung erheblich. Diese Technologien ermöglichen es Systemen, große Datenmengen in Echtzeit zu analysieren und komplexe Muster und Anomalien zu erkennen, die herkömmlichen Methoden möglicherweise entgehen. Indem sie kontinuierlich aus neuen Daten lernen, passen KI-Algorithmen ihre Erkennungsfähigkeiten an und verfeinern sie, wodurch Fehlalarme reduziert und die Präzision von Betrugswarnungen verbessert wird.
Darüber hinaus verbessern KI und maschinelles Lernen die Fähigkeit, neue Betrugstrends und ausgeklügelte Machenschaften zu erkennen. Diese dynamische Anpassungsfähigkeit stellt sicher, dass Überwachungssysteme den sich entwickelnden Bedrohungen immer einen Schritt voraus sind und einen zuverlässigeren und wirksameren Schutz vor Finanzkriminalität bieten. Dadurch können Finanzinstitute ein höheres Maß an Sicherheit und Betriebseffizienz erreichen und von fortschrittlichen, automatisierten Lösungen profitieren, die sich ihren Anforderungen anpassen.
Zum Beispiel,
Im Juni 2023 brachte Oscilar seine KI-gestützte ACH-Betrugserkennungslösung auf den Markt, die die Genauigkeit der Betrugsprävention im schnell wachsenden ACH-Netzwerk verbessern soll. Die Lösung nutzt fortschrittliche Algorithmen für maschinelles Lernen und generative KI, um betrügerische Transaktionen mit hoher Präzision zu identifizieren und zu verhindern. Dies ist besonders wichtig, da der ACH-Kreditbetrug von 2021 bis 2023 um 6 % zugenommen hat, was die Notwendigkeit einer effektiveren Betrugserkennung unterstreicht. Die Technologie von Oscilar behebt die Einschränkungen traditioneller Methoden, die oft Schwierigkeiten haben, mit den sich entwickelnden Betrugstaktiken Schritt zu halten, und bietet eine robustere und zeitnahe Abwehr gegen ausgeklügelte betrügerische Aktivitäten.
- Zusammenarbeit mit Fintech-Unternehmen und Technologieanbietern
Durch die Zusammenarbeit mit Fintech-Unternehmen und Technologieanbietern können Finanzinstitute fortschrittliche Technologien und innovative Lösungen zur verbesserten Betrugserkennung nutzen. Diese Partnerschaften ermöglichen die Integration modernster Tools und Fachkenntnisse und erleichtern die Entwicklung ausgefeilterer Betrugserkennungssysteme. Durch die Zusammenarbeit können Banken und Fintech-Unternehmen die neuesten Fortschritte in den Bereichen KI, maschinelles Lernen und Datenanalyse nutzen, um die Genauigkeit zu verbessern, Fehlalarme zu reduzieren und besser vor betrügerischen Aktivitäten zu schützen.
Zum Beispiel,
Im Dezember 2023 ging Treasury Prime eine Partnerschaft mit Effectiv ein, um die Betrugserkennung für Banken und Fintechs zu verbessern. Durch die Zusammenarbeit kann das Netzwerk von Treasury Prime die fortschrittliche Transaktionsüberwachungslösung von Effectiv nutzen, die KI nutzt, um betrügerische Transaktionen in Echtzeit zu identifizieren und einzudämmen. Diese Partnerschaft hilft Finanzinstituten, finanzielle Verluste und Reputationsschäden durch die Integration ausgefeilter Betrugspräventionstools zu reduzieren. Der Schritt unterstreicht die Bedeutung der Zusammenarbeit mit Fintech-Unternehmen und Technologieanbietern, um die Betrugserkennung und das Risikomanagement in einer sich schnell entwickelnden Finanzlandschaft zu stärken.
Einschränkung/Herausforderung
- Hohes Transaktionsvolumen erhöht die Erkennungskomplexität
Die Verwaltung eines hohen Transaktionsvolumens stellt bei der Betrugserkennung eine große Herausforderung dar. Mit der steigenden Anzahl von Transaktionen wird es immer schwieriger, betrügerische Aktivitäten von legitimen Aktivitäten zu unterscheiden. Traditionelle Methoden können damit kaum Schritt halten, übersehen oft subtile Muster oder erzeugen falsche Positivergebnisse, was zu Ineffizienzen und erhöhten Risiken führt.
Darüber hinaus erfordert die enorme Datenmenge robuste Systeme, die Informationen in Echtzeit verarbeiten und analysieren können. Ohne fortschrittliche Technologie fällt es Finanzinstituten möglicherweise schwer, Transaktionen effektiv zu überwachen, was sie anfällig für ausgeklügelte Betrugsmaschen macht, die durch die Maschen schlüpfen können.
Zum Beispiel
Laut einem im Juni 2024 von der NVIDIA Corporation veröffentlichten Artikel beschleunigte American Express die Betrugserkennung mithilfe von KI-gestützten Long Short-Term Memory (LSTM)-Modellen. Durch die Nutzung paralleler Berechnungen auf GPUs konnte das Unternehmen große Mengen an Transaktionsdaten schnell verarbeiten und analysieren und so Betrugserkennung in Echtzeit ermöglichen. Dieser Ansatz half American Express, die Komplexität zu bewältigen, die sich aus ihrem hohen Transaktionsvolumen ergab. Die Integration von beschleunigter Berechnung und KI verbesserte ihre Fähigkeit, Anomalien schnell zu erkennen, die Betriebseffizienz zu verbessern und potenzielle Verluste durch Betrug zu reduzieren.
- Hohe Anfangsinvestition und laufende Wartungskosten
Hohe Anfangsinvestitionen und laufende Wartungskosten stellen erhebliche Hindernisse für die Implementierung moderner Betrugserkennungssysteme dar. Diese finanziellen Belastungen können kleinere Institutionen davon abhalten, Spitzentechnologien einzuführen, was sie potenziell anfällig für Betrug macht. Die erheblichen Kosten, die sowohl mit der Einrichtung als auch mit der laufenden Wartung solcher Systeme verbunden sind, können das Budget belasten und den Entscheidungsprozess für Institutionen erschweren, die erweiterte Lösungen zur Transaktionsüberwachung in Betracht ziehen.
Für Instanzen,
Mehrere Unternehmen weisen erhebliche Anfangsinvestitionen und laufende Wartungskosten auf. GLAnalytics verlangt eine jährliche Gebühr von 8.000 USD, während CertifID bei 150 USD pro Monat plus 10 USD pro Transaktion beginnt. Die Module von credolab kosten zwischen 600 und 1.000 USD pro Monat. Diese hohen Kosten können Unternehmen davon abhalten, diese Dienste einzuführen oder aufrechtzuerhalten.
Dieser Marktbericht enthält Einzelheiten zu neuen Entwicklungen, Handelsvorschriften, Import-Export-Analysen, Produktionsanalysen, Wertschöpfungskettenoptimierungen, Marktanteilen, Auswirkungen inländischer und lokaler Marktteilnehmer, analysiert Chancen in Bezug auf neue Einnahmequellen, Änderungen der Marktvorschriften, strategische Marktwachstumsanalysen, Marktgröße, Kategoriemarktwachstum, Anwendungsnischen und -dominanz, Produktzulassungen, Produkteinführungen, geografische Expansionen und technologische Innovationen auf dem Markt. Um weitere Informationen zum Markt zu erhalten, wenden Sie sich an Data Bridge Market Research, um einen Analystenbericht zu erhalten. Unser Team hilft Ihnen dabei, eine fundierte Marktentscheidung zu treffen, um Marktwachstum zu erzielen.
Marktumfang für die Überwachung von Betrugserkennungstransaktionen
Der globale Markt für die Überwachung von Transaktionen zur Betrugserkennung ist in sechs wichtige Segmente unterteilt, basierend auf Angebot, Funktion, Bereitstellungsmodus, Unternehmensgröße, Anwendung und Branche. Das Wachstum dieser Segmente hilft Ihnen bei der Analyse schwacher Wachstumssegmente in den Branchen und bietet den Benutzern einen wertvollen Marktüberblick und Markteinblicke, die ihnen dabei helfen, strategische Entscheidungen zur Identifizierung der wichtigsten Marktanwendungen zu treffen.
Angebot
- Lösung
- Dienstleistungen
- Professioneller Service
- Support und Wartung
- Integrationsdienste
- Beratungsleistungen
- Fortbildungen & Events
- Verwalteter Dienst
- Professioneller Service
Funktion
- KYC/Kunden-Onboarding
- Fallmanagement
- Watchlist-Screening
- Dashboard und Berichte
- Sonstiges
Bereitstellungsmodus
- Vor Ort
- Cloud
Organization Size
- Small & Medium Sized Organization
- Cloud
- On-Premise
- Large Size Organizations
- Cloud
- On-Premise
Application
- Payment Fraud Detection
- Money Laundering Detection
- Account Takeover Protection
- Identity Theft Prevention
- Others
Vertical
- Banking, Financial Services, and Insurance (BFSI)
- Solution
- Services
- Retail
- Solution
- Services
- IT & Telecommunication
- Solution
- Services
- Government & Defense
- Solution
- Services
- Healthcare
- Solution
- Services
- Manufacturing
- Solution
- Services
- Energy & Utilities
- Solution
- Services
- Others
- Solution
- Services
Fraud Detection Transaction Monitoring Market Regional Analysis
The market is analyzed and market size insights and trends are provided by offering, function, deployment mode, organization size, application, and vertical as referenced above.
The countries covered in the market are U.S., Canada, Mexico, Germany, U.K., France, Italy, Spain, Russia, Turkey, Netherlands, Norway, Finland, Denmark, Sweden, Poland, Switzerland, Belgium, Rest of Europe, China, Japan, India, South Korea, Australia, New Zealand, Indonesia, Thailand, Malaysia, Singapore, Philippines, Taiwan, Vietnam, Rest of Asia-Pacific, Brazil, Argentina, rest of South America, U.A.E., Saudi Arabia, South Africa, Egypt, Israel, Oman, Bahrain, Kuwait, Qatar, and rest of Middle East and Africa.
North America region dominates and the fastest growing region in the global fraud detection transaction monitoring market due to the region's advanced technological infrastructure, high adoption of digital payment systems, and significant presence of major financial institutions.
The country section of the report also provides individual market-impacting factors and changes in regulation in the market domestically that impact the current and future trends of the market. Data points such as new sales, replacement sales, country demographics, regulatory acts, and import-export tariffs are some of the major pointers used to forecast the market scenario for individual countries. Also, the presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, and the impact of sales channels are considered while providing forecast analysis of the country data.
Fraud Detection Transaction Monitoring Market Share
The global fraud detection transaction monitoring market competitive landscape provides details of competitors. Details included are company overview, company financials, revenue generated, market potential, investment in R&D, new market initiatives, production sites and facilities, company strengths and weaknesses, product launch, product approvals, product width and breadth, application dominance, and product type lifeline curve. The above data points provided are only related to the company’s focus on the market.
Fraud Detection Transaction Monitoring Market Leaders Operating in the Market are:
- Amazon Web Services, Inc. (U.S.)
- LexisNexis (Subsidiary of Reed Elsevier) (U.S.)
- Mastercard (U.S.)
- TATA Consultancy Services Limited (India)
- Fiserv, Inc. (U.S.)
- SAS Institute Inc. (U.S.)
- ACI Worldwide (U.S.)
- Oracle (U.S.)
- NICE (Israel)
- FICO (U.S.)
- SymphonyAI (U.S.)
- UBIQUITY (U.S)
- Verafin Solutions ULC (Subsidiary of Nasdaq Inc.) (Canada)
- GB Group plc (‘GBG’) (U.K.)
- INFORM SOFTWARE (Germany)
- Quantexa (U.K.)
- Sum and Substance Ltd (U.K.)
- DataVisor, Inc. (U.S.)
- Hawk (Germany)
- Featurespace Limited (England)
- INETCO Systems Ltd. (Canada)
- Abra Innovations, Inc. (U.S.)
- Seon Technologies Ltd. (Hungary)
- Feedzai (Portugal)
- Sanction Scanner (U.K.)
Latest Developments in Fraud Detection Transaction Monitoring Market
- In June 2024, according to an article published by the NVIDIA Corporation, American Express accelerated fraud detection using AI-powered long short-term memory (LSTM) models. By leveraging parallel computing on GPUs, the company rapidly processed and analyzed vast amounts of transactional data, enabling real-time fraud detection. This approach helped American Express handle the complexities arising from their high transaction volume. The integration of accelerated computing and AI enhanced their ability to detect anomalies swiftly, improving operational efficiency and reducing potential losses due to fraud
- In July 2023, according to the blog published by BluEnt, companies faced increased challenges in fraud detection due to the high volume of transactions. Advanced technology and automated systems were adopted to analyze large datasets and spot high-risk trends and anomalies. Despite difficulties managing unstructured data where most fraud occurs, financial crime data analytics enabled the effective review of both structured and unstructured data. This approach helped in preventing fraudulent activities and integrating various data sources for improved detection
- In June 2024, ACI Worldwide and RS2 launched a comprehensive payment solution in Brazil, combining their acquiring and issuing technologies. This cloud-enabled platform allowed financial institutions and payment service providers to efficiently introduce new products and services, enhancing security and reducing costs. The integration of advanced fraud management and real-time analytics benefited the companies by expanding their market reach and increasing revenue opportunities
- In October 2023, ACI Worldwide partnered with Nymcard to enhance its fraud and anti-money laundering capabilities. This partnership allowed Nymcard to quickly and efficiently detect and prevent financial fraud using advanced machine learning and analytics. The deployment via ACI’s public cloud improved scalability, security, and operational efficiency, significantly strengthening Nymcard’s market position in MENA
- Im Juni 2024 erweiterte DataVisor, Inc. seine Multi-Tenancy-Fähigkeiten, um skalierbare, sichere und flexible Lösungen zur Betrugsprävention und Geldwäschebekämpfung bereitzustellen. Das Upgrade ermöglichte es Unternehmen, Betrugs- und Geldwäschebekämpfungsstrategien anzupassen und sie mit Funktionen wie maschinellen Lernmodellen und Geschäftsregeln auf Untermandanten auszuweiten. Diese Verbesserungen unterstützten Sponsorbanken bei der Einhaltung von Vorschriften und ermöglichten es großen Finanzinstituten, Daten zu zentralisieren und gleichzeitig Entscheidungen für Untermandanten zu treffen. Diese Entwicklung kam DataVisor zugute, indem sie seine Marktposition stärkte und die Akzeptanz seiner Lösungen bei Banken und Finanzinstituten erhöhte, was die Kundenzufriedenheit und -bindung steigerte.
SKU-
Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud
- Interaktives Datenanalyse-Dashboard
- Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
- Zugriff für Research-Analysten für Anpassungen und Abfragen
- Konkurrenzanalyse mit interaktivem Dashboard
- Aktuelle Nachrichten, Updates und Trendanalyse
- Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Forschungsmethodik
Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.
Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.
Anpassung möglich
Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.