Global Deep Learning Market
Marktgröße in Milliarden USD
CAGR : %
Prognosezeitraum |
2025 –2032 |
Marktgröße (Basisjahr) | USD 7.28 Billion |
Marktgröße (Prognosejahr) | USD 77.91 Billion |
CAGR |
|
Wichtige Marktteilnehmer |
|
>Globaler Deep-Learning-Markt nach Hardware (Prozessor, Speicher, Netzwerk), Software (Lösungsplattform/API), Diensten (Installation, Schulung, Support und Wartung), Anwendung (Signalerkennung, Data Mining, Bilderkennung , Sonstiges), Endbenutzer (Automobilindustrie, Recht, Landwirtschaft, Einzelhandel, Marketing, Sicherheit, Gesundheitswesen, Fertigung, Fintech, Personalwesen) – Branchentrends und Prognose bis 2029.
Marktanalyse und Größe
Die Deep-Learning-Technologie wird unter anderem in der Verarbeitung natürlicher Sprache (NLP) , Spracherkennungssoftware, Sprachübersetzungsdiensten, Bilderkennungstools und Spracherkennungssoftware häufig eingesetzt. Diese Technologie ist in den Bereichen Gesundheitswesen, Landwirtschaft, Fertigung, Einzelhandel, Automobil und Sicherheit äußerst nützlich.
Der globale Markt für Deep Learning wurde 2021 auf 2,99 Milliarden USD geschätzt und soll bis 2029 68,70 Milliarden USD erreichen, was einer durchschnittlichen jährlichen Wachstumsrate von 34,50 % im Prognosezeitraum 2022–2029 entspricht. „Bilderkennung“ stellt aufgrund der hohen Nutzung zur Erkennung von Mustern in unstrukturierten Daten wie Text, Bildern, Ton und Video das größte Anwendungssegment im jeweiligen Markt dar. Der vom Marktforschungsteam von Data Bridge zusammengestellte Marktbericht umfasst eine eingehende Expertenanalyse, Import-/Exportanalyse, Preisanalyse, Produktionsverbrauchsanalyse und PESTLE-Analyse.
Marktdefinition
Deep Learning ist ein Teilgebiet des maschinellen Lernens, das eine Reihe von Algorithmen und Computeranweisungen umfasst, die im Allgemeinen von der Struktur und Funktion des Gehirns inspiriert sind. Diese Technologie könnte auch als maschinelle Lerntechnik bezeichnet werden, die Computern hilft, anhand von Beispielen zu lernen.
Berichtsumfang und Marktsegmentierung
Berichtsmetrik |
Details |
Prognosezeitraum |
2022 bis 2029 |
Basisjahr |
2021 |
Historische Jahre |
2020 (Anpassbar auf 2019 – 2014) |
Quantitative Einheiten |
Umsatz in Mrd. USD, Volumen in Einheiten, Preise in USD |
Abgedeckte Segmente |
Hardware (Prozessor, Speicher, Netzwerk), Software (Lösungsplattform/API), Dienste (Installation, Schulung, Support und Wartung), Anwendung (Signalerkennung, Data Mining, Bilderkennung, Sonstiges), Endbenutzer (Automobilindustrie, Recht, Landwirtschaft, Einzelhandel, Marketing, Sicherheit, Gesundheitswesen, Fertigung, Fintech, Personalwesen) |
Abgedeckte Länder |
USA, Kanada und Mexiko in Nordamerika, Deutschland, Frankreich, Großbritannien, Niederlande, Schweiz, Belgien, Russland, Italien, Spanien, Türkei, Restliches Europa in Europa, China, Japan, Indien, Südkorea, Singapur, Malaysia, Australien, Thailand, Indonesien, Philippinen, Restlicher Asien-Pazifik-Raum (APAC) im Asien-Pazifik-Raum (APAC), Saudi-Arabien, Vereinigte Arabische Emirate, Israel, Ägypten, Südafrika, Restlicher Naher Osten und Afrika (MEA) als Teil des Nahen Ostens und Afrikas (MEA), Brasilien, Argentinien und Restliches Südamerika als Teil von Südamerika. |
Abgedeckte Marktteilnehmer |
Baumer Optronic GmbH (Deutschland), JAI A/S (Dänemark), MVTec Software GmbH (Deutschland), Tordivel AS (Norwegen), ISRA VISION (Deutschland), FLIR Systems, Inc. (USA), AMETEK.Inc (USA), Qualitas Technologies Pvt Ltd (Indien), SUALAB (Südkorea), Cadence Design Systems, Inc. (USA), CEVA, Inc. (USA), Inuitive (USA), Cognex Corporation (USA), Basler AG (Deutschland), Omron Corporation (Japan), Keyence Corporation (Japan), National Instruments (USA), Sony Corporation (Japan), Teledyne Technologies, Inc. (USA), Allied Vision Technologies GmbH (Deutschland) und Texas Instruments Inc. (USA) unter anderem |
Marktchancen |
|
Marktdynamik für Deep Learning
In diesem Abschnitt geht es um das Verständnis der Markttreiber, Vorteile, Chancen, Einschränkungen und Herausforderungen. All dies wird im Folgenden ausführlich erläutert:
Treiber
- Steigender Trend zur Digitalisierung
Der zunehmende Trend zur Digitalisierung sowie die weltweite Expansion der Informationstechnologiebranche (IT) sind einer der Hauptfaktoren für das Wachstum des Deep-Learning-Marktes. Deep-Learning-Algorithmen können verfügbare Datenpunkte automatisch abfangen, was die Genauigkeit und Effizienz des Entscheidungsprozesses verbessert.
- Zunahme von Cyberangriffen
Die zunehmende Zahl von Cyberangriffen ermutigt Branchen, Datenbankmanagement, Betrugserkennungssysteme und Cybersicherheit einzusetzen, um den Markt anzukurbeln. Diese Technologie wird zur Verarbeitung medizinischer Bilder für die Arzneimittelforschung und Krankheitsdiagnose eingesetzt und bietet virtuelle Patientenhilfe im Gesundheitssektor.
- Integration mit fortschrittlichen Technologien
Die Integration von Big Data Analytics und Cloud Computing, um verschiedenen Branchen erweiterte Dienste anzubieten, beeinflusst den Markt zusätzlich. Die Forschungs- und Entwicklungsaktivitäten (RandD) verbessern Hardware- und Softwareverarbeitungslösungen für Deep Learning.
Darüber hinaus wirken sich die schnelle Urbanisierung, veränderte Lebensstile, ein Anstieg der Investitionen und höhere Verbraucherausgaben positiv auf den Deep-Learning-Markt aus.
Gelegenheiten
Darüber hinaus bietet das Vorhandensein begrenzter strukturierter Daten zur Steigerung der Nachfrage nach Deep-Learning-Lösungen den Marktakteuren im Prognosezeitraum von 2022 bis 2029 lukrative Möglichkeiten. Darüber hinaus werden hohe Ausgaben in den Branchen Reisen, Tourismus, Gesundheitswesen und Gastgewerbe den Markt weiter wachsen lassen.
Einschränkungen/Herausforderungen
Andererseits wird erwartet, dass die zunehmende Komplexität der Hardware aufgrund der in der Technologie verwendeten komplexen Algorithmen und des Mangels an technischem Fachwissen das Marktwachstum behindern wird. Darüber hinaus werden mangelnde Flexibilität und Multitasking sowie das Fehlen von Standards und Protokollen den Deep-Learning-Markt im Prognosezeitraum 2022–2029 vor Herausforderungen stellen.
Dieser Bericht zum Deep-Learning-Markt enthält Einzelheiten zu neuen Entwicklungen, Handelsvorschriften, Import-Export-Analysen, Produktionsanalysen, Wertschöpfungskettenoptimierungen, Marktanteilen, Auswirkungen inländischer und lokaler Marktteilnehmer, analysiert Chancen in Bezug auf neue Einnahmequellen, Änderungen der Marktvorschriften, strategische Marktwachstumsanalysen, Marktgröße, Kategoriemarktwachstum, Anwendungsnischen und -dominanz, Produktzulassungen, Produkteinführungen, geografische Expansionen und technologische Innovationen auf dem Markt. Um weitere Informationen zum Deep-Learning-Markt zu erhalten, wenden Sie sich an Data Bridge Market Research, um einen Analyst Brief zu erhalten. Unser Team hilft Ihnen dabei, eine fundierte Marktentscheidung zu treffen, um Marktwachstum zu erzielen.
Auswirkungen von Covid-19 auf den Deep-Learning-Markt
COVID-19 hatte aufgrund der strengen Ausgangssperren und der sozialen Distanzierung zur Eindämmung der Ausbreitung des Virus negative Auswirkungen auf den Deep-Learning-Markt. Die wirtschaftliche Unsicherheit, die teilweise Schließung von Unternehmen und das geringe Verbrauchervertrauen wirkten sich auf die Nachfrage im Deep-Learning-Markt aus. Die Lieferkette wurde während der Pandemie beeinträchtigt und es kam zu Verzögerungen bei den Logistikaktivitäten. Es wird jedoch erwartet, dass der Deep-Learning-Markt nach der Pandemie aufgrund der Lockerung der Beschränkungen wieder an Fahrt gewinnt.
Jüngste Entwicklungen
- Larsen und Toubro Infotech haben sich im Juni 2021 mit Amazon Web Services zusammengeschlossen. Larsen und Toubro Infotech haben eine dedizierte Cloud-Einheit für AWS gegründet, die sich auf Migration und Modernisierung, Datenanalyse, Internet der Dinge und Datenanalyse konzentriert .
Globaler Deep Learning-Marktumfang und Marktgröße
Der Deep-Learning-Markt ist nach Hardware, Software, Diensten, Anwendungen und Endbenutzer segmentiert. Das Wachstum dieser Segmente hilft Ihnen bei der Analyse schwacher Wachstumssegmente in den Branchen und bietet den Benutzern einen wertvollen Marktüberblick und Markteinblicke, die ihnen bei der strategischen Entscheidungsfindung zur Identifizierung der wichtigsten Marktanwendungen helfen.
Hardware
- Prozessor
- Grafikkarte
- FPGA
- CPU
- Sonstiges
- Erinnerung
- Netzwerk
Software
- Lösung
- Plattform
- API
Dienstleistungen
- Installation
- Ausbildung
- Support und Wartung
Anwendung
- Signalerkennung
- Datengewinnung
- Bilderkennung
- Andere
Endbenutzer
- Automobilindustrie
- Autonomes Fahren
- Mensch-Maschine-Schnittstelle
- Teilautonomes Fahren
- Gesetz
- Landwirtschaft
- Präzisionslandwirtschaft
- Viehbestandsüberwachung
- Drohnenanalyse
- Landwirtschaftliche Roboter
- Sonstiges
- Einzelhandel
Produktempfehlung und -planung
- Kundenbeziehungsmanagement
- Visuelle Suche
- Virtueller Assistent
- Preisoptimierung
- Zahlungsdienstleistungsmanagement
- Lieferkettenmanagement
- Bedarfsplanung
- Sonstiges
Marketing
- Sicherheit
- Identitäts- und Zugriffsverwaltung
- Risiko- und Compliance-Management
- Verschlüsselung
- Verhinderung von Datenverlust
- Einheitliches Bedrohungsmanagement
- Antivirus/Antimalware
- Systeme zur Erkennung und Verhinderung von Angriffen
- Sonstiges
- Gesundheitspflege
- Patientendaten und Risikoanalyse
- Lifestyle-Management und -Überwachung
- Präzisionsmedizin
- Stationäre Versorgung und Krankenhausmanagement
- Medizinische Bildgebung und Diagnostik
- Arzneimittelforschung
- Virtueller Assistent
- Tragbare Geräte
- Forschung
- Herstellung
- Materialbewegung
- Vorausschauende Wartung und Maschineninspektion
- Produktionsplanung
- Außendienst
- Rückgewinnung
- Qualitätskontrolle
- Finetech
- Personalwesen
Regionale Analyse/Einblicke zum Deep Learning-Markt
Der Deep-Learning-Markt wird analysiert und es werden Einblicke in die Marktgröße und Trends nach Land, Hardware, Software, Diensten, Anwendung und Endbenutzer bereitgestellt.
Die im Marktbericht zum Deep Learning abgedeckten Länder sind die USA, Kanada und Mexiko in Nordamerika, Deutschland, Frankreich, Großbritannien, Niederlande, Schweiz, Belgien, Russland, Italien, Spanien, Türkei, Restliches Europa in Europa, China, Japan, Indien, Südkorea, Singapur, Malaysia, Australien, Thailand, Indonesien, Philippinen, Restlicher asiatisch-pazifischer Raum (APAC) in Asien-Pazifik (APAC), Saudi-Arabien, Vereinigte Arabische Emirate, Israel, Ägypten, Südafrika, Restlicher Naher Osten und Afrika (MEA) als Teil von Naher Osten und Afrika (MEA), Brasilien, Argentinien und Restliches Südamerika als Teil von Südamerika.
Nordamerika dominiert den Deep-Learning-Markt aufgrund erhöhter Investitionen in künstliche Intelligenz und neuronale Netzwerke in der Region.
Im asiatisch-pazifischen Raum wird im Prognosezeitraum von 2022 bis 2029 aufgrund der Einrichtung von Unterausschüssen für künstliche Intelligenz und maschinelles Lernen innerhalb der Bundesregierung dieser Region ein erhebliches Wachstum erwartet.
Der Länderabschnitt des Berichts enthält auch Angaben zu einzelnen marktbeeinflussenden Faktoren und Änderungen der Regulierung auf dem Inlandsmarkt, die sich auf die aktuellen und zukünftigen Trends des Marktes auswirken. Datenpunkte wie Downstream- und Upstream-Wertschöpfungskettenanalysen, technische Trends und Porters Fünf-Kräfte-Analyse sowie Fallstudien sind einige der Anhaltspunkte, die zur Prognose des Marktszenarios für einzelne Länder verwendet werden. Bei der Bereitstellung von Prognoseanalysen der Länderdaten werden auch die Präsenz und Verfügbarkeit globaler Marken und ihre Herausforderungen aufgrund großer oder geringer Konkurrenz durch lokale und inländische Marken sowie die Auswirkungen inländischer Zölle und Handelsrouten berücksichtigt.
Wettbewerbslandschaft und Deep Learning-Markt
Die Wettbewerbslandschaft des Deep-Learning-Marktes liefert Details nach Wettbewerbern. Die enthaltenen Details sind Unternehmensübersicht, Unternehmensfinanzen, erzielter Umsatz, Marktpotenzial, Investitionen in Forschung und Entwicklung, neue Marktinitiativen, globale Präsenz, Produktionsstandorte und -anlagen, Produktionskapazitäten, Stärken und Schwächen des Unternehmens, Produkteinführung, Produktbreite und -umfang, Anwendungsdominanz. Die oben angegebenen Datenpunkte beziehen sich nur auf den Fokus der Unternehmen in Bezug auf den Deep-Learning-Markt.
Einige der wichtigsten Akteure auf dem Deep-Learning-Markt sind
- Baumer Optronic GmbH (Deutschland)
- JAI A/S (Dänemark)
- MVTec Software GmbH (Deutschland)
- Tordivel AS (Norwegen)
- ISRA VISION (Deutschland)
- FLIR Systems, Inc. (USA)
- AMETEK.Inc (USA)
- Qualitas Technologies Pvt Ltd (Indien)
- SUALAB (Südkorea)
- Cadence Design Systems, Inc. (USA)
- CEVA, Inc. (USA)
- Inuitive (USA)
- Cognex Corporation (USA)
- Basler AG (Deutschland)
- Omron Corporation (Japan)
- Keyence Corporation (Japan)
- National Instruments (USA)
- Sony Corporation (Japan)
- Teledyne Technologies, Inc. (USA)
- Allied Vision Technologies GmbH (Deutschland)
- Texas Instruments Inc. (USA)
SKU-
Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud
- Interaktives Datenanalyse-Dashboard
- Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
- Zugriff für Research-Analysten für Anpassungen und Abfragen
- Konkurrenzanalyse mit interaktivem Dashboard
- Aktuelle Nachrichten, Updates und Trendanalyse
- Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Forschungsmethodik
Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.
Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.
Anpassung möglich
Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.