Globaler Bericht zur Analyse von Marktgröße, Marktanteil und Trends für Deep Learning in der industriellen Bildverarbeitung – Branchenüberblick und Prognose bis 2032

Inhaltsverzeichnis anfordernInhaltsverzeichnis anfordern Mit Analyst sprechen Mit Analyst sprechen Kostenloser Beispielbericht Kostenloser Beispielbericht Vor dem Kauf anfragen Vorher anfragen Jetzt kaufenJetzt kaufen

Globaler Bericht zur Analyse von Marktgröße, Marktanteil und Trends für Deep Learning in der industriellen Bildverarbeitung – Branchenüberblick und Prognose bis 2032

  • Semiconductors and Electronics
  • Upcoming Reports
  • Apr 2025
  • Global
  • 350 Seiten
  • Anzahl der Tabellen: 220
  • Anzahl der Abbildungen: 60

Global Deep Learning In Machine Vision Market

Marktgröße in Milliarden USD

CAGR :  % Diagram

Chart Image USD 5.13 Billion USD 13.18 Billion 2024 2032
Diagramm Prognosezeitraum
2025 –2032
Diagramm Marktgröße (Basisjahr)
USD 5.13 Billion
Diagramm Marktgröße (Prognosejahr)
USD 13.18 Billion
Diagramm CAGR
%
Diagramm Wichtige Marktteilnehmer
  • Cognex Corporation
  • Intel Corporation
  • NATIONAL INSTRUMENTS CORP.
  • SICK AG
  • Datalogic S.p.A.

Globale Marktsegmentierung für Deep Learning in der industriellen Bildverarbeitung nach Angebot (Hardware, Software und Services), Anwendung (Inspektion, Bildanalyse, Anomalieerkennung, Objektklassifizierung, Objektverfolgung, Zählung, Barcode-Erkennung, Merkmalserkennung, Standorterkennung, optische Zeichenerkennung, Gesichtserkennung, Instanzsegmentierung und andere), Objekt (Bild und Video), Vertikal (Elektronik, Fertigung, Automobil und Transport, Lebensmittel und Getränke, Luft- und Raumfahrt, Gesundheitswesen, Bau und Materialien, Energie und andere) – Branchentrends und Prognose bis 2032

Deep Learning im Markt für maschinelles Sehen

Deep Learning in der industriellen Bildverarbeitung Marktgröße

  • Der globale Markt für Deep Learning in der industriellen Bildverarbeitung wurde im Jahr 2024 auf 5,13 Milliarden US-Dollar geschätzt und soll bis 2032 13,18 Milliarden US-Dollar erreichen.
  • Im Prognosezeitraum von 2025 bis 2032 wird der Markt voraussichtlich mit einer jährlichen Wachstumsrate von 12,50 % wachsen, vor allem aufgrund der steigenden Nachfrage nach automatisierter Qualitätsprüfung.
  • Dieses Wachstum wird durch die zunehmende Nutzung der KI -gestützten Bilderkennung und den zunehmenden Einsatz von Bildverarbeitungssystemen in Branchen wie der Fertigung, dem Gesundheitswesen und der Automobilindustrie vorangetrieben.

Marktanalyse für Deep Learning in der industriellen Bildverarbeitung

  • Der Markt für Deep Learning in der industriellen Bildverarbeitung verzeichnet ein signifikantes Wachstum, angetrieben durch die steigende Nachfrage nach automatisierter Qualitätsprüfung, die zunehmende Nutzung KI-gestützter Bilderkennung und die Integration der industriellen Bildverarbeitung in die industrielle Automatisierung in verschiedenen Sektoren.
  • Fortschritte im Hochleistungsrechnen, in der Edge-KI und in tiefen neuronalen Netzwerken erweitern die Fähigkeiten von visionsbasierten Systemen und ermöglichen Echtzeit-Entscheidungen, Fehlererkennung und eine verbesserte Prozessautomatisierung in der Fertigungs-, Gesundheits- und Automobilindustrie.
  • Nordamerika dominiert den Markt für Deep Learning in der industriellen Bildverarbeitung aufgrund der starken Präsenz führender Technologieunternehmen, robuster Investitionen in Forschung und Entwicklung sowie der weit verbreiteten Einführung KI-gestützter Automatisierung in Branchen wie der Automobil- und Elektronikindustrie. 
  • In den USA entwickeln Unternehmen wie NVIDIA und Cognex beispielsweise KI-gesteuerte Bildverarbeitungssysteme, um die Qualitätskontrolle zu verbessern und Produktionsprozesse zu rationalisieren.
  • Neue Trends wie KI-gestützte Defekterkennung, Deep-Learning -basierte Objektverfolgung und die Integration von Machine Vision in die Robotik verändern das Deep Learning in der Machine Vision-Landschaft und machen es zu einem entscheidenden Bestandteil der modernen industriellen Automatisierung und Qualitätssicherung.

Berichtsumfang und Deep Learning in der Machine Vision-Marktsegmentierung  

Eigenschaften

Deep Learning in der industriellen Bildverarbeitung – Wichtige Markteinblicke

Abgedeckte Segmente

  • Nach Angebot : Hardware, Software und Services
  • Nach Anwendung:  Inspektion, Bildanalyse, Anomalieerkennung , Objektklassifizierung, Objektverfolgung, Zählen, Barcode-Erkennung, Merkmalserkennung, Standorterkennung, optische Zeichenerkennung , Gesichtserkennung, Instanzsegmentierung und andere
  • Nach Objekt:  Bild und Video
  • Nach Branchen: Elektronik, Fertigung, Automobil- und Transportindustrie, Lebensmittel und Getränke, Luft- und Raumfahrt, Gesundheitswesen, Bauwesen und Materialien, Energie und andere

Abgedeckte Länder

Nordamerika

  • UNS
  • Kanada
  • Mexiko

Europa

  • Deutschland
  • Frankreich
  • Vereinigtes Königreich
  • Niederlande
  • Schweiz
  • Belgien
  • Russland
  • Italien
  • Spanien
  • Truthahn
  • Restliches Europa

Asien-Pazifik

  • China
  • Japan
  • Indien
  • Südkorea
  • Singapur
  • Malaysia
  • Australien
  • Thailand
  • Indonesien
  • Philippinen
  • Restlicher Asien-Pazifik-Raum

Naher Osten und Afrika

  • Saudi-Arabien
  • Vereinigte Arabische Emirate
  • Südafrika
  • Ägypten
  • Israel
  • Rest des Nahen Ostens und Afrikas

Südamerika

  • Brasilien
  • Argentinien
  • Restliches Südamerika

Wichtige Marktteilnehmer

  • Cognex Corporation (USA)
  • Intel Corporation (USA)
  • NATIONAL INSTRUMENTS CORP. (USA)
  • SICK AG (Deutschland)
  • Datalogic SpA (Italien)
  • STEMMER IMAGING AG INH ON (Deutschland)
  • Abto Software (Ukraine)
  • Zebra Technologies Corp (USA)
  • Autonics Corporation (Südkorea)
  • Basler AG (Deutschland)
  • Cyth Systems, Inc. (USA)
  • Euresys (Belgien)
  • IDS Imaging Development Systems GmbH (Deutschland)
  • LeewayHertz (USA)
  • MVTEC SOFTWARE GMBH (Deutschland)
  • Omron Corporation (Japan)
  • perClass BV (Niederlande)
  • Qualitas Technologies (Indien)
  • RSIP Vision (Israel)
  • USS Vision LLC (USA)
  • Viska Automation Systems Ltd. T/A Viska Systems (Irland)

Marktchancen

  • Zunehmende Nutzung KI-gestützter Bildverarbeitungssysteme im Gesundheitswesen
  • Steigende Akzeptanz von 3D-Inspektionssystemen

Wertschöpfungsdaten-Infosets

Neben den Einblicken in Marktszenarien wie Marktwert, Wachstumsrate, Segmentierung, geografische Abdeckung und wichtige Akteure enthalten die von Data Bridge Market Research kuratierten Marktberichte auch eingehende Expertenanalysen, geografisch dargestellte Produktion und Kapazität nach Unternehmen, Netzwerklayouts von Distributoren und Partnern, detaillierte und aktualisierte Preistrendanalysen sowie Defizitanalysen der Lieferkette und der Nachfrage

Deep Learning in der industriellen Bildverarbeitung – Markttrends

„Fortschritte bei der KI-gestützten Fehlererkennung“

  • Ein wichtiger Trend, der den Markt für Deep Learning in der industriellen Bildverarbeitung prägt, ist die zunehmende Nutzung der KI-gestützten Defekterkennung in Branchen wie der Fertigung, der Automobilindustrie und der Elektronik, getrieben durch den Bedarf an höherer Präzision und weniger menschlichen Fehlern.
  • Unternehmen nutzen Deep-Learning-Algorithmen, Edge Computing und Echtzeit-Vision-Analysen, um Qualitätskontrollprozesse zu verbessern, Fehler zu minimieren und die Produktionseffizienz zu steigern.
  • So stellte die Cognex Corporation im Oktober 2023 das In-Sight 3800 Vision System vor, das über Deep-Learning-gestützte Defekterkennungsfunktionen verfügt, um die Fertigungsgenauigkeit zu verbessern und die automatisierte Inspektion zu optimieren.
  • Fortschrittliche Technologien wie KI-gesteuerte Anomalieerkennung, automatisierte Ursachenanalyse und vorausschauende Wartung werden in Bildverarbeitungssysteme integriert, um die Fehlererkennung zu optimieren und Betriebsausfallzeiten zu reduzieren.
  • Dieser Trend revolutioniert das Deep Learning in der Bildverarbeitungsbranche, indem er die Produktionsqualität verbessert, Abfall reduziert und die Einführung KI-gesteuerter visueller Inspektionssysteme vorantreibt und so für mehr Effizienz und Kosteneffizienz für Unternehmen sorgt.

Marktdynamik für Deep Learning in der industriellen Bildverarbeitung

Treiber

„Zunehmende Nutzung KI-gestützter Qualitätsprüfungen in der Fertigung“

  • Der Markt für Deep Learning in der industriellen Bildverarbeitung erlebt ein rasantes Wachstum aufgrund der zunehmenden Abhängigkeit von KI-gestützter Qualitätsprüfung in der Fertigungsindustrie, getrieben durch den Bedarf an höherer Genauigkeit, Effizienz und Fehlererkennung.
  • Unternehmen integrieren Bildverarbeitungssysteme mit Deep-Learning-Algorithmen, um die visuelle Echtzeitprüfung zu verbessern, menschliche Fehler zu reduzieren und Produktionslinien für eine verbesserte Konsistenz und Ausgabequalität zu optimieren.
  • So ging Siemens im April 2024 eine Partnerschaft mit NVIDIA ein, um KI-gesteuerte Bildverarbeitungslösungen in seine Fertigungsprozesse zu integrieren, die automatisierte Qualitätskontrolle zu verbessern und Produktionsfehler zu minimieren.
  • KI-gestützte Bildverarbeitungssysteme ermöglichen vorausschauende Wartung, automatisierte Anomalieerkennung und Echtzeit-Defektklassifizierung, senken die Betriebskosten und verbessern die Fertigungspräzision.
  • Dieser Treiber wird das Wachstum des Deep Learning-Marktes im Bereich der industriellen Bildverarbeitung beschleunigen, indem er die Produktionseffizienz steigert, Ausfallzeiten minimiert und die allgemeine Produktqualität in verschiedenen Branchen verbessert.

Gelegenheit

„Steigende Nutzung KI-gestützter Bildverarbeitungssysteme im Gesundheitswesen“

  • Der Markt für Deep Learning in der maschinellen Bildverarbeitung steht vor einem erheblichen Wachstum, da die Gesundheitsbranche zunehmend KI-gestützte Bildverarbeitungssysteme für die medizinische Bildgebung , Diagnostik und robotergestützte Operationen einsetzt.
  • Die Nachfrage nach automatisierter Bildanalyse, Anomalieerkennung und Echtzeit-Patientenüberwachung treibt Investitionen in Deep-Learning-basierte Bildverarbeitungslösungen voran, um die Genauigkeit und Effizienz medizinischer Verfahren zu verbessern.
  • So führte GE Healthcare im Januar 2025 ein KI-gesteuertes medizinisches Bildgebungssystem ein, das Deep Learning nutzt, um die Früherkennung von Krankheiten wie Krebs und neurologischen Störungen zu verbessern.
  • Gesundheitsdienstleister und Forschungseinrichtungen integrieren Deep-Learning-Vision-Technologien in die Pathologie, Radiologie und Roboterchirurgie, um eine präzise Diagnostik zu ermöglichen und menschliche Fehler zu reduzieren.
  • Diese Chance dürfte das langfristige Wachstum im Markt für Deep Learning im Bereich der maschinellen Bildverarbeitung vorantreiben, indem sie die medizinische Bildgebung revolutioniert, die Behandlungsergebnisse verbessert und KI-gestützte Fortschritte bei Innovationen im Gesundheitswesen fördert.

Einschränkung/Herausforderung

„Hohe Implementierungskosten und Integrationskomplexität“

  • Der Markt für Deep Learning in der industriellen Bildverarbeitung steht vor erheblichen Herausforderungen aufgrund der hohen Implementierungskosten und der Komplexität bei der Integration KI-gestützter Bildverarbeitungssysteme in bestehende industrielle Arbeitsabläufe.
  • Der Bedarf an spezieller Hardware, umfangreichem Datentraining und hoher Rechenleistung macht die Bereitstellung von Deep-Learning-basierten Vision-Lösungen zu einem kostspieligen Unterfangen, insbesondere für kleine und mittlere Unternehmen (KMU).
  • So kam es beispielsweise im Juni 2024 bei einem europäischen Automobilhersteller zu Verzögerungen bei der Einführung KI-basierter Sichtprüfsysteme aufgrund hoher Vorlaufkosten und der Notwendigkeit, Mitarbeiter im Umgang mit KI-gesteuerten Automatisierungstools neu zu schulen.
  • Darüber hinaus stellen Kompatibilitätsprobleme mit Altsystemen, ein Mangel an qualifizierten KI-Experten und die Notwendigkeit einer kontinuierlichen Algorithmusverfeinerung Hürden für eine nahtlose Einführung in verschiedenen Branchen dar.
  • Um diese Herausforderungen zu bewältigen, sind kosteneffiziente KI-Modelle, skalierbare Deep-Learning-Lösungen und strategische Partnerschaften erforderlich, um eine reibungslosere Integration zu ermöglichen und eine breite Akzeptanz in industriellen Anwendungen zu fördern.

Deep Learning in der industriellen Bildverarbeitung – Marktumfang

Der Markt ist nach Angebot, Anwendung, Objekt und Branche segmentiert.

Segmentierung

Untersegmentierung

Durch das Angebot

  • Hardware
  • Software
  • Leistungen

Nach Anwendung

  • Inspektion
  • Bildanalyse
  • Anomalieerkennung
  • Objektklassifizierung
  • Objektverfolgung
  • Zählen
  • Barcode-Erkennung
  • Merkmalserkennung
  • Standorterkennung
  • Optische Zeichenerkennung
  • Gesichtserkennung
  • Instanzsegmentierung
  • Sonstiges

Nach Objekt

  • Bild
  • Video

Nach Vertikal

  • Elektronik
  • Herstellung
  • Automobil- und Transportwesen
  • Essen und Getränke
  • Luft- und Raumfahrt
  • Gesundheitspflege
  • Bau und Material
  • Leistung
  • Sonstiges

Deep Learning in der industriellen Bildverarbeitung Marktregionale Analyse

„Nordamerika ist die dominierende Region im Markt für Deep Learning in der industriellen Bildverarbeitung“

  • Nordamerika verfügt über ein hochentwickeltes KI- und Automatisierungs-Ökosystem, das die Einführung von Deep-Learning-Technologien in Machine-Vision-Anwendungen beschleunigt.
  • Die etablierten Industrie- und Fertigungssektoren der Region treiben die Nachfrage nach automatisierten Lösungen für Qualitätskontrolle, Fehlererkennung und vorausschauende Wartung auf Basis von Deep Learning voran.
  • Große KI- und Machine-Vision-Unternehmen sowie führende Forschungseinrichtungen tragen zur kontinuierlichen Innovation und großflächigen Implementierung von Deep-Learning-basierten Vision-Systemen bei.
  • Diese Faktoren positionieren Nordamerika als dominierenden Markt und fördern Innovation, Investitionen und eine nachhaltige Expansion im Bereich Deep Learning in der Bildverarbeitungsbranche.

„Nordamerika wird voraussichtlich die höchste Wachstumsrate verzeichnen“

  • Die zunehmende Einführung von Automatisierung und KI-gesteuerten Qualitätskontrollsystemen in Branchen wie der Fertigung, dem Gesundheitswesen und der Automobilindustrie treibt das Marktwachstum voran
  • Die zunehmende Anwendung von Deep Learning in der industriellen Bildverarbeitung, einschließlich Fehlererkennung, Objekterkennung und vorausschauender Wartung, treibt die Nachfrage nach fortschrittlichen Lösungen an.
  • Regierungsinitiativen und Investitionen in intelligente Fabriken, Industrie 4.0 und KI-gesteuerte industrielle Automatisierung beschleunigen die Einführung von Bildverarbeitungstechnologien
  • Diese Faktoren machen Nordamerika zur am schnellsten wachsenden Region im Markt für Deep Learning in der industriellen Bildverarbeitung und fördern Innovationen und eine breite Anwendung in allen Branchen.

Marktanteile im Bereich Deep Learning in der industriellen Bildverarbeitung

Die Wettbewerbslandschaft des Marktes liefert detaillierte Informationen zu den einzelnen Wettbewerbern. Zu den Details gehören Unternehmensübersicht, Unternehmensfinanzen, Umsatz, Marktpotenzial, Investitionen in Forschung und Entwicklung, neue Marktinitiativen, globale Präsenz, Produktionsstandorte und -anlagen, Produktionskapazitäten, Stärken und Schwächen des Unternehmens, Produkteinführung, Produktbreite und -umfang sowie Anwendungsdominanz. Die oben genannten Datenpunkte beziehen sich ausschließlich auf die Marktausrichtung der Unternehmen.

Die wichtigsten Marktführer auf dem Markt sind:

  • Cognex Corporation (USA)
  • Intel Corporation (USA)
  • NATIONAL INSTRUMENTS CORP. (USA)
  • SICK AG (Deutschland)
  • Datalogic SpA (Italien)
  • STEMMER IMAGING AG INH ON (Deutschland)
  • Abto Software (Ukraine)
  • Zebra Technologies Corp (USA)
  • Autonics Corporation (Südkorea)
  • Basler AG (Deutschland)
  • Cyth Systems, Inc. (USA)
  • Euresys (Belgien)
  • IDS Imaging Development Systems GmbH (Deutschland)
  • LeewayHertz (USA)
  • MVTEC SOFTWARE GMBH (Deutschland)
  • Omron Corporation (Japan)
  • perClass BV (Niederlande)
  • Qualitas Technologies (Indien)
  • RSIP Vision (Israel)
  • USS Vision LLC (USA)
  • Viska Automation Systems Ltd. T/A Viska Systems (Irland)

Neueste Entwicklungen im globalen Markt für Deep Learning im Bereich maschinelles Sehen

  • Im Januar 2025 intensivierte die NVIDIA Corporation ihre Zusammenarbeit mit führenden Automobilunternehmen wie Toyota, Aurora und Continental, um die Entwicklung hochautomatisierter und autonomer Fahrzeugflotten zu beschleunigen. Durch den Einsatz fortschrittlicher KI-gestützter Bildverarbeitungsfunktionen will NVIDIA die Sicherheit und Funktionalität selbstfahrender Systeme verbessern und seine führende Position in der autonomen Fahrzeugtechnologie stärken. Diese Expansion dürfte bedeutende Fortschritte bei KI-gestützten Mobilitätslösungen vorantreiben und die Zukunft des autonomen Transports prägen.
  • Im Mai 2024 stellte Avnet, Inc. das QCS6490 Vision-AI Development Kit vor, mit dem Entwicklungsteams schnell Prototypen leistungsstarker Edge-KI-Embedded-Produkte mit Multikamera-Funktionen entwickeln können. Das Kit basiert auf dem energieeffizienten MSC SM2S-QCS6490 SMARC-Rechenmodul, das auf dem Qualcomm QCS6490-Prozessor basiert und eine schnellere Bereitstellung KI-gestützter Vision-Lösungen in verschiedenen Branchen ermöglicht. Diese Innovation soll die Einführung KI-gestützter Vision-Anwendungen beschleunigen und die Effizienz in verschiedenen Sektoren verbessern.
  • Im Mai 2024 stellte die Microsoft Corporation GPT-4 Turbo mit Vision vor, ein multimodales KI-Modell zur Verarbeitung von Text- und Bildeingaben. Dieses Modell verbessert verschiedene Anwendungen, indem es erweiterte Bild- und Videoanalyse, Textgenerierung, optische Zeichenerkennung (OCR) und Objekterkennung ermöglicht und so die Einführung KI-gestützter Automatisierung in verschiedenen Branchen vorantreibt. Die Einführung dieses Modells dürfte die KI-gesteuerte Bildverarbeitung revolutionieren und Geschäftsabläufe sowie Automatisierungsmöglichkeiten verbessern.
  • Im April 2024 brachte die Cognex Corporation das 3D-Vision-System In-Sight L38 auf den Markt. Es integriert KI mit 2D- und 3D-Vision-Technologien, um Prüf- und Messprozesse zu verbessern. Durch die Erstellung von 2D-Bildern mit eingebetteten 3D-Daten vereinfacht das System das Training, verbessert die Genauigkeit der Merkmalserkennung und gewährleistet konsistente Prüfergebnisse. Dies erweitert die Möglichkeiten der industriellen Automatisierung. Diese Weiterentwicklung wird die Qualitätssicherung und Fertigungsprozesse revolutionieren und die Präzision und Effizienz industrieller Anwendungen steigern.
  • Im April 2024 stellte IBM die Softwareplattform IBM Z IntelliMagic Vision für z/OS vor, eine Performance-Analyselösung für IBM Z-Systeme. Mit ihren benutzerdefinierten No-Code-Visualisierungen und flexiblen Datenanalysetools ermöglicht die Plattform Analysten, potenzielle Risiken zu identifizieren und Workloads zu optimieren. Dies verbessert die Effizienz und Zuverlässigkeit des IT-Betriebs im Unternehmen. Diese Einführung unterstreicht IBMs Engagement für die Verbesserung der IT-Leistung im Unternehmen und sorgt für mehr operative Belastbarkeit und Effizienz.

SKU-

Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud

  • Interaktives Datenanalyse-Dashboard
  • Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
  • Zugriff für Research-Analysten für Anpassungen und Abfragen
  • Konkurrenzanalyse mit interaktivem Dashboard
  • Aktuelle Nachrichten, Updates und Trendanalyse
  • Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Demo anfordern

Forschungsmethodik

Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.

Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.

Anpassung möglich

Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.

Häufig gestellte Fragen

Der Markt ist basierend auf Globale Marktsegmentierung für Deep Learning in der industriellen Bildverarbeitung nach Angebot (Hardware, Software und Services), Anwendung (Inspektion, Bildanalyse, Anomalieerkennung, Objektklassifizierung, Objektverfolgung, Zählung, Barcode-Erkennung, Merkmalserkennung, Standorterkennung, optische Zeichenerkennung, Gesichtserkennung, Instanzsegmentierung und andere), Objekt (Bild und Video), Vertikal (Elektronik, Fertigung, Automobil und Transport, Lebensmittel und Getränke, Luft- und Raumfahrt, Gesundheitswesen, Bau und Materialien, Energie und andere) – Branchentrends und Prognose bis 2032 segmentiert.
Die Größe des Globaler Bericht zur Analyse von Markt wurde im Jahr 2024 auf 5.13 USD Billion USD geschätzt.
Der Globaler Bericht zur Analyse von Markt wird voraussichtlich mit einer CAGR von 12.5% im Prognosezeitraum 2025 bis 2032 wachsen.
Die Hauptakteure auf dem Markt sind Cognex Corporation, Intel Corporation, NATIONAL INSTRUMENTS CORP., SICK AG, Datalogic S.p.A..
Testimonial