Globaler Markt für Data-Science-Plattformen, Komponententyp (Plattform, Dienste), Funktionsbereich (Marketing, Vertrieb, Logistik, Finanzen und Buchhaltung, Kundensupport, Geschäftsbetrieb, Sonstiges), Bereitstellungsmodell (vor Ort, Cloud-basiert), Organisationsgröße (kleine und mittlere Unternehmen (KMU), Großunternehmen), Endbenutzeranwendung (Bankwesen, Finanzdienstleistungen und Versicherungen (BFSI), Telekommunikation und IT, Einzelhandel und E-Commerce, Gesundheitswesen und Biowissenschaften, Fertigung, Energie und Versorgung, Medien und Unterhaltung, Transport und Logistik, Regierung, Sonstiges) – Branchentrends und Prognose bis 2030.
Marktanalyse und Größen für Data-Science-Plattformen
Die Plattform erleichtert die Integration von Daten aus verschiedenen Quellen wie Datenbanken, APIs, Dateien und Streaming-Daten. Sie ermöglicht es Benutzern, eine Verbindung zu Datenquellen herzustellen, Daten zu extrahieren und sie für die Analyse zu transformieren. Data-Science-Plattformen bieten häufig Tools zur Datenbereinigung, Vorverarbeitung und Feature-Engineering.
Data Bridge Market Research analysiert, dass der Markt für Data-Science-Plattformen, der im Jahr 2022 122,94 Milliarden USD betrug, bis 2030 auf 942,76 Milliarden USD anwachsen wird und im Prognosezeitraum eine durchschnittliche jährliche Wachstumsrate von 29,00 % aufweisen wird. Neben Markteinblicken wie Marktwert, Wachstumsrate, Marktsegmenten, geografischer Abdeckung, Marktteilnehmern und Marktszenario enthält der vom Data Bridge Market Research-Team zusammengestellte Marktbericht eine eingehende Expertenanalyse, Import-/Exportanalyse, Preisanalyse, Produktionsverbrauchsanalyse und PESTLE-Analyse.
Marktumfang und -segmentierung für Data-Science-Plattformen
Berichtsmetrik |
Einzelheiten |
Prognosezeitraum |
2023 bis 2030 |
Basisjahr |
2022 |
Historische Jahre |
2021 (anpassbar auf 2015–2020) |
Quantitative Einheiten |
Umsatz in Mrd. USD, Volumen in Einheiten, Preise in USD |
Abgedeckte Segmente |
Komponententyp (Plattform, Dienste), Funktionsbereich (Marketing, Vertrieb, Logistik, Finanzen und Buchhaltung, Kundensupport, Geschäftsbetrieb, Sonstiges), Bereitstellungsmodell (vor Ort, Cloud-basiert), Organisationsgröße (kleine und mittlere Unternehmen (KMU), Großunternehmen), Endbenutzeranwendung (Bankwesen, Finanzdienstleistungen und Versicherungen (BFSI), Telekommunikation und IT, Einzelhandel und E-Commerce, Gesundheitswesen und Biowissenschaften, Fertigung, Energie- und Versorgungsunternehmen, Medien und Unterhaltung, Transport und Logistik, Regierung, Sonstiges) |
Abgedeckte Länder |
USA, Kanada und Mexiko in Nordamerika, Deutschland, Frankreich, Großbritannien, Niederlande, Schweiz, Belgien, Russland, Italien, Spanien, Türkei, Restliches Europa in Europa, China, Japan, Indien, Südkorea, Singapur, Malaysia, Australien, Thailand, Indonesien, Philippinen, Restlicher Asien-Pazifik-Raum (APAC) im Asien-Pazifik-Raum (APAC), Saudi-Arabien, Vereinigte Arabische Emirate, Südafrika, Ägypten, Israel, Restlicher Naher Osten und Afrika (MEA) als Teil des Nahen Ostens und Afrikas (MEA), Brasilien, Argentinien und Restliches Südamerika als Teil von Südamerika. |
Abgedeckte Marktteilnehmer |
IBM (USA), DataRobot Inc. (USA), apheris AI GmbH (Deutschland), The Digital Talent Ecosystem (USA), Databand (Israel), dotData (USA), Explorium Inc. (USA), Noogata (Israel), Tecton Inc. (USA), Spell Designs Pty Ltd (USA), Arrikto Inc. (USA), Iterative (USA), Google Inc (USA), Microsoft (USA), SAS Institute Inc. (USA), Amazon Web Services, Inc. (USA), The MathWorks, Inc. (USA), Cloudera Inc. (USA), Teradata (USA), TIBCO Software Inc. (USA), ALTERYX, INC. (USA), RapidMiner (USA), Databricks (USA), Snowflake Inc. (USA), H2O.ai (USA), Altair Inc. (USA), Anaconda Inc. (USA), SAP SE (USA), Domino Data Lab Inc. (USA) und Dataiku (USA) |
Marktchancen |
|
Marktdefinition
Eine Data-Science-Plattform ist eine Software oder ein Toolset, das den gesamten Data-Science-Workflow vereinfacht und optimiert. Sie bietet eine einheitliche Umgebung für Datenwissenschaftler, Analysten und andere Interessengruppen, um Aufgaben im Zusammenhang mit der Datenerfassung, -aufbereitung, -analyse, -modellierung, -visualisierung und Bereitstellung von Modellen für maschinelles Lernen auszuführen. Eine Data-Science-Plattform bietet in der Regel eine Reihe integrierter Tools und Funktionen, die es Benutzern ermöglichen, effektiv mit Daten zu arbeiten.
Dynamik globaler Data-Science-Plattformen
Treiber
- Rasantes Wachstum von Big Data
Die Menge der von Fachleuten erfassten Daten wächst aufgrund des Wachstums von Social Media, IOT und anderen Medien ständig. Data Science-Plattformen haben einen enormen Datenfluss in strukturierter und unstrukturierter Form geschaffen. Die Entwicklung maschinenbasierter und von Menschen generierter Daten ist im Allgemeinen zehnmal größer als die von Unternehmensdaten im alten Stil, die Wachstumsrate von Maschinendaten ist 50-mal schneller. Das enorme Wachstum des Datenangebots bietet Unternehmen die Möglichkeit, neue Dinge zu erwerben, was zu einer steigenden Nachfrage nach neuen Ansätzen geführt hat und eine entscheidende Rolle bei der Förderung des Marktes für Data Science-Plattformen spielt.
- Hohe Investitionen in Forschung und Entwicklung
Riesige Investitionen in Forschung und Entwicklung haben zu einem rasanten technologischen Fortschritt geführt. Moderne Datenverarbeitungs-Koordination und -Lösungen sind für das Unternehmenswachstum von entscheidender Bedeutung. Die Nachfrage nach Technologien zur Verbesserung der Kompetenz wächst mit der zunehmenden Zahl von Unternehmen. Data-Science-Plattformen sind gefragt, weil sie das Trainieren, Entwerfen und Skalieren vereinfachen. Technologien wie künstliche Intelligenz, Edge-Computing und maschinelles Lernen befinden sich in einer Wachstumsphase, die dazu beiträgt, den Markt für Datenwissenschaftsplattformen voranzutreiben.
Gelegenheiten
- Hohe Investitionen und technologische Fortschritte
Die hohen Investitionen in Forschung und Entwicklung werden voraussichtlich lukrative Möglichkeiten für den Markt schaffen, die das Wachstum des Marktes für Data-Science-Plattformen in Zukunft weiter steigern werden. Darüber hinaus bieten die rasanten Fortschritte bei Technologien wie künstlicher Intelligenz (KI), maschinellem Lernen (ML) und dem Internet der Dinge (IoT) zahlreiche weitere Wachstumsmöglichkeiten auf dem Markt.
Einschränkungen/Herausforderungen
- Unsicherheit über die geschäftlichen Probleme
Für Unternehmen ist es unerlässlich, die Probleme, die sie mithilfe einer Data-Science-Plattform lösen möchten, gründlich zu untersuchen. Ohne ein klares Verständnis des vorliegenden Geschäftsproblems kann das bloße Auswählen von Datensätzen und Durchführen einer Datenanalyse zu geringer Produktivität führen. Die Wirksamkeit der Verwendung einer Data-Science-Plattform für fundierte Entscheidungen wird erheblich beeinträchtigt. Darüber hinaus können die Bemühungen eines Unternehmens selbst mit einem definierten Ziel wirkungslos sein, wenn seine Erwartungen hinsichtlich der Implementierung einer Data-Science-Plattform nicht mit seinen Zielen übereinstimmen. Dieser besondere Faktor dürfte im gesamten Prognosezeitraum mehrere Wachstumshindernisse schaffen.
- Mangelndes technisches Fachwissen
In der aktuellen Geschäftslandschaft werden fortschrittliche Analysemethoden wie Streaming Analytics, maschinelles Lernen und prädiktive Analysen häufig eingesetzt. Diese Methoden stellen jedoch eine Herausforderung dar, da sie umfassende analytische Fachkenntnisse erfordern. Die Entwicklung eines maschinellen Lernmodells erfordert beispielsweise technisches Können, analytische Fähigkeiten und kritisches Denkvermögen. Leider fehlt es vielen Endbenutzern an Personal, das über die erforderlichen Kenntnisse und Fähigkeiten verfügt. Darüber hinaus ist ein erheblicher Teil der Bemühungen eines Unternehmens dem Sammeln und Bereinigen von Daten aus mehreren Quellen gewidmet. Es ist nicht notwendig, dass jeder Mitarbeiter, der mit Daten umgeht, sich gut mit Datenwissenschaft auskennt. Um eine Kultur datengesteuerter Entscheidungsfindung zu fördern, ist jedoch eine Kombination aus Geschäftskompetenz und entsprechender Schulung unerlässlich. Folglich wird der Mangel an geschultem Personal und technischem Fachwissen in absehbarer Zukunft voraussichtlich eine erhebliche Herausforderung für den Markt für Datenwissenschaftsplattformen darstellen.
Dieser Marktbericht für Data-Science-Plattformen enthält Einzelheiten zu neuen Entwicklungen, Handelsvorschriften, Import-Export-Analysen, Produktionsanalysen, Wertschöpfungskettenoptimierungen, Marktanteilen, Auswirkungen inländischer und lokaler Marktteilnehmer, analysiert Chancen in Bezug auf neue Einnahmequellen, Änderungen der Marktvorschriften, strategische Marktwachstumsanalysen, Marktgröße, Kategoriemarktwachstum, Anwendungsnischen und -dominanz, Produktzulassungen, Produkteinführungen, geografische Expansionen und technologische Innovationen auf dem Markt. Um weitere Informationen zum Markt für Data-Science-Plattformen zu erhalten, wenden Sie sich an Data Bridge Market Research, um einen Analystenbericht zu erhalten. Unser Team hilft Ihnen dabei, eine fundierte Marktentscheidung zu treffen, um Marktwachstum zu erzielen.
Globaler Marktumfang für Data-Science-Plattformen
Der Markt für Data-Science-Plattformen ist nach Komponententyp, Funktionsaufteilung, Bereitstellungsmodell, Unternehmensgröße und Endbenutzeranwendung segmentiert. Das Wachstum dieser Segmente hilft Ihnen bei der Analyse schwacher Wachstumssegmente in den Branchen und bietet den Benutzern einen wertvollen Marktüberblick und Markteinblicke, die ihnen bei der strategischen Entscheidungsfindung zur Identifizierung der wichtigsten Marktanwendungen helfen.
Komponententyp
- Plattform
- Dienstleistungen
- Professionelle Dienste
- Support und Wartung
- Beratung
- Bereitstellung und Integration
- Verwaltete Dienste
Funktionsteilung
- Marketing
- Verkäufe
- Logistik
- Finanz-und Rechnungswesen
- Kundendienst
- Geschäftsbetrieb
- Andere
Bereitstellungsmodell
- Auf dem Gelände
- Cloudbasiert
Größe der Organisation
- Kleine und mittlere Unternehmen (KMU)
- Große Unternehmen
Endbenutzeranwendung
- Banken, Finanzdienstleistungen und Versicherungen (BFSI)
- Telekommunikation und IT
- Einzelhandel und E-Commerce
- Gesundheitswesen und Biowissenschaften
- Produktion, Energie und Versorgung
- Medien und Unterhaltung
- Transport und Logistik
- Regierung
- Andere
Globaler Data Science-Plattform-Markt – Regionale Analyse/Einblicke
Der Markt für Data-Science-Plattformen wird analysiert und es werden Einblicke in die Marktgröße und Trends nach Land, Komponententyp, Funktionsaufteilung, Bereitstellungsmodell, Organisationsgröße und Endbenutzeranwendung wie oben angegeben bereitgestellt.
Die im Marktbericht für Data-Science-Plattformen abgedeckten Länder sind die USA, Kanada und Mexiko in Nordamerika, Deutschland, Frankreich, Großbritannien, Niederlande, Schweiz, Belgien, Russland, Italien, Spanien, Türkei, Restliches Europa in Europa, China, Japan, Indien, Südkorea, Singapur, Malaysia, Australien, Thailand, Indonesien, Philippinen, Restlicher Asien-Pazifik-Raum (APAC) in Asien-Pazifik (APAC), Saudi-Arabien, Vereinigte Arabische Emirate, Südafrika, Ägypten, Israel, Restlicher Naher Osten und Afrika (MEA) als Teil von Naher Osten und Afrika (MEA), Brasilien, Argentinien und Restliches Südamerika als Teil von Südamerika.
Nordamerika dominiert den Markt für Data-Science-Plattformen aufgrund der gut ausgebauten Infrastruktur und der niedrigen Arbeitskosten in den aufstrebenden Ländern. Darüber hinaus wird erwartet, dass die effektiven After-Sales-Services, die von Herstellern in den Volkswirtschaften angeboten werden, die Expansion im Prognosezeitraum weiter beschleunigen werden.
Im asiatisch-pazifischen Raum wird im Prognosezeitraum von 2023 bis 2030 aufgrund des rasanten Wachstums der Öl- und Gasexploration in der Region ein deutliches Wachstum erwartet. Chinas große Produktionsbasis für Elektronikartikel trägt maßgeblich zur regionalen Marktexpansion bei.
Der Länderabschnitt des Berichts enthält auch Angaben zu einzelnen marktbeeinflussenden Faktoren und Änderungen der Regulierung auf dem Inlandsmarkt, die sich auf die aktuellen und zukünftigen Trends des Marktes auswirken. Datenpunkte wie Downstream- und Upstream-Wertschöpfungskettenanalysen, technische Trends und Porters Fünf-Kräfte-Analyse sowie Fallstudien sind einige der Anhaltspunkte, die zur Prognose des Marktszenarios für einzelne Länder verwendet werden. Bei der Bereitstellung von Prognoseanalysen der Länderdaten werden auch die Präsenz und Verfügbarkeit globaler Marken und ihre Herausforderungen aufgrund großer oder geringer Konkurrenz durch lokale und inländische Marken sowie die Auswirkungen inländischer Zölle und Handelsrouten berücksichtigt.
Wettbewerbsumfeld und Data Science-Plattform Marktanteilsanalyse
Die Wettbewerbslandschaft des Marktes für Data-Science-Plattformen liefert Details nach Wettbewerbern. Die enthaltenen Details sind Unternehmensübersicht, Unternehmensfinanzen, erzielter Umsatz, Marktpotenzial, Investitionen in Forschung und Entwicklung, neue Marktinitiativen, globale Präsenz, Produktionsstandorte und -anlagen, Produktionskapazitäten, Stärken und Schwächen des Unternehmens, Produkteinführung, Produktbreite und -umfang, Anwendungsdominanz. Die oben angegebenen Datenpunkte beziehen sich nur auf den Fokus der Unternehmen in Bezug auf den Markt für Data-Science-Plattformen.
Einige der wichtigsten Akteure auf dem Markt für Data-Science-Plattformen sind:
- IBM (USA)
- DataRobot Inc., (USA)
- apheris AI GmbH (Deutschland)
- Das digitale Talent-Ökosystem (USA)
- Databand (Israel)
- dotData (USA)
- Explorium Inc., (USA)
- Noogata (Israel)
- Tecton Inc., (USA)
- Spell Designs Pty Ltd (USA)
- Arrikto Inc., (USA)
- Iterativ (USA)
- Google Inc. (USA)
- Microsoft (US)
- SAS Institute Inc., (USA)
- Amazon Web Services, Inc. (USA)
- The MathWorks, Inc. (USA)
- Cloudera Inc., (USA)
- Teradata (USA)
- TIBCO Software Inc. (USA)
- ALTERYX, INC. (USA)
- RapidMiner (USA),
- Databricks (USA)
- Snowflake Inc., (USA)
- H2O.ai (USA)
- Altair Inc., (USA)
- Anaconda Inc., (USA)
- SAP SE (USA)
- Domino Data Lab Inc., (USA)
- Dataik (USA)
Artikelnummer-