Global Data Science Platform Market
Marktgröße in Milliarden USD
CAGR :
%

![]() |
2024 –2031 |
![]() | USD 158.59 Billion |
![]() | USD 1,216.19 Billion |
![]() |
|
![]() |
|
Global Data Science Platform Market Segmentation, By Component Type (Platform, Services, Support and Maintenance, Consulting, and Deployment and Integration), Function Division (Marketing, Sales, Logistics, Finance and Accounting, Customer Support, Business Operations, and Others), Deployment Model (On-Premises and Cloud based), Organization Size (Small and Medium-sized Enterprises (SMEs), Large Enterprises), End User Application (Banking, Financial Services, and Insurance (BFSI), Telecom and IT, Retail and E-commerce, Healthcare and Life sciences, Manufacturing, Energy and Utilities, Media and Entertainment, Transportation and Logistics, Government, and Others) – Industry Trends and Forecast to 2031
Data Science Platform Market Analysis
The data science platform market is experiencing rapid growth due to the integration of advanced technologies such as artificial intelligence (AI), machine learning (ML), and cloud computing. One of the latest methods driving the market is the use of AutoML (automated machine learning) tools, which simplify the process of model creation, enabling businesses with less expertise to harness AI effectively. These platforms allow data scientists to focus on innovation, while automation handles repetitive tasks.
Cloud-based data science platforms, such as Google Cloud AI and AWS SageMaker, further promote scalability and cost-efficiency. By utilizing the cloud, businesses can access immense computational power on-demand, ensuring the rapid processing of vast datasets.
Another advancement is the adoption of collaborative tools that allow teams to work simultaneously on projects, increasing efficiency and reducing the time-to-market for AI solutions. These platforms often integrate with existing data ecosystems, making them accessible to a wide range of industries such as healthcare, finance, and retail. As organizations realize the value of data-driven insights, the demand for comprehensive data science platforms is expected to rise significantly, driving market growth.
Data Science Platform Market Size
The global data science platform market size was valued at USD 158.59 billion in 2023 and is projected to reach USD 1,216.19 billion by 2031, with a CAGR of 29.00% during the forecast period of 2024 to 2031. In addition to the market insights such as market value, growth rate, market segments, geographical coverage, market players, and market scenario, the market report curated by the Data Bridge Market Research team includes in-depth expert analysis, import/export analysis, pricing analysis, production consumption analysis, and pestle analysis.
Data Science Platform Market Trends
“Rise of Automated Machine Learning (AutoML)”
Ein wichtiger Trend, der das Wachstum des Marktes für Data-Science-Plattformen vorantreibt, ist der Aufstieg des automatisierten maschinellen Lernens (AutoML). Diese Technologie vereinfacht und beschleunigt den Modellentwicklungsprozess und ermöglicht es Benutzern mit begrenzter Data-Science-Expertise, prädiktive Modelle zu erstellen. So stellte Science Applications International Corp. im Januar 2023 die Data-Science-Plattform „Tenjin“ vor, eine vielseitige Lösung, die die Low-Code- bis Full-Code-Entwicklung für KI- und maschinelle Lernanwendungen unterstützt. Tenjin basiert auf Dataiku und erleichtert den gesamten Lebenszyklus der KI- und ML-Modellentwicklung, von der Bereitstellung bis hin zur Schulung und Automatisierung, zusammen mit fortschrittlichen Datenvisualisierungstools. Diese Plattform zielt darauf ab, komplexe Prozesse zu vereinfachen und KI für ein breiteres Spektrum von Unternehmen zugänglich zu machen.
Berichtsumfang und Marktsegmentierung für Data-Science-Plattformen
Eigenschaften |
Wichtige Markteinblicke für Data-Science-Plattformen |
Abgedeckte Segmente |
|
Abgedeckte Länder |
USA, Kanada und Mexiko in Nordamerika, Deutschland, Frankreich, Großbritannien, Niederlande, Schweiz, Belgien, Russland, Italien, Spanien, Türkei, Restliches Europa in Europa, China, Japan, Indien, Südkorea, Singapur, Malaysia, Australien, Thailand, Indonesien, Philippinen, Restlicher Asien-Pazifik-Raum (APAC) in Asien-Pazifik (APAC), Saudi-Arabien, Vereinigte Arabische Emirate, Südafrika, Ägypten, Israel, Restlicher Naher Osten und Afrika (MEA) als Teil von Naher Osten und Afrika (MEA), Brasilien, Argentinien und Restliches Südamerika als Teil von Südamerika |
Wichtige Marktteilnehmer |
IBM (USA), DataRobot Inc. (USA), apheris AI GmbH (Deutschland), The Digital Talent Ecosystem (USA), Databand (Israel), dotData (USA), Explorium Inc. (USA), Noogata (Israel), Tecton Inc. (USA), Spell Designs Pty Ltd (USA), Arrikto Inc. (USA), Iterative (USA), Google Inc (USA), Microsoft (USA), SAS Institute Inc. (USA), Amazon Web Services, Inc. (USA), The MathWorks, Inc. (USA), Cloudera Inc. (USA), Teradata (USA), TIBCO Software Inc. (USA), ALTERYX, INC. (USA), RapidMiner (USA), Databricks (USA), Snowflake Inc. (USA), H2O.ai (USA), Altair Inc. (USA), Anaconda Inc. (USA), SAP SE (USA), Domino Data Lab Inc. (USA) und Dataiku (USA) |
Marktchancen |
|
Wertschöpfende Dateninfosets |
Zusätzlich zu den Markteinblicken wie Marktwert, Wachstumsrate, Marktsegmenten, geografischer Abdeckung, Marktteilnehmern und Marktszenario enthält der vom Data Bridge Market Research-Team zusammengestellte Marktbericht eine eingehende Expertenanalyse, Import-/Exportanalyse, Preisanalyse, Produktionsverbrauchsanalyse und PESTLE-Analyse. |
Marktdefinition für Data-Science-Plattformen
Eine Data-Science-Plattform ist eine integrierte Umgebung, die Datenwissenschaftlern Tools, Bibliotheken und Infrastruktur zur Verfügung stellt, um datengesteuerte Projekte zu entwickeln, zu verwalten und auszuführen. Sie ermöglicht es Benutzern, große Datensätze zu sammeln, zu analysieren und zu visualisieren und erleichtert gleichzeitig die Zusammenarbeit zwischen Teams. Diese Plattformen unterstützen häufig verschiedene Programmiersprachen (wie Python, R und SQL), Algorithmen für maschinelles Lernen und Datenpipelines für eine effiziente Modellerstellung und -bereitstellung. Data-Science-Plattformen bieten außerdem Funktionen wie Versionskontrolle, Automatisierung und Skalierbarkeit, sodass Unternehmen Erkenntnisse aus Daten einfacher auf strukturierte und wiederholbare Weise für die Entscheidungsfindung nutzen können.
Marktdynamik für Data-Science-Plattformen
Treiber
- Nachfrage nach datengesteuerter Entscheidungsfindung
Die zunehmende Abhängigkeit von datengesteuerten Entscheidungen ist ein wichtiger Treiber des Marktes für Data-Science-Plattformen. Unternehmen aller Branchen nutzen zunehmend Dateneinblicke, um ihre Strategie zu verbessern, die Kundenbindung zu steigern und Abläufe zu optimieren. Data-Science-Plattformen ermöglichen es Unternehmen, riesige Datensätze effizient zu verarbeiten und zu analysieren, was zu genaueren und fundierteren Entscheidungen führt. So stellte die GoodData Corporation im Oktober 2023 ihre neueste KI-gesteuerte Datenanalyseplattform vor, die darauf ausgelegt ist, die Arbeitsabläufe von maschinellem Lernen (ML), KI und Business Intelligence (BI) zu verbessern. Diese Plattform umfasst verschiedene generative KI-Funktionen, darunter einen virtuellen Assistenten, der Zusammenfassungen und Erkenntnisse liefert. Durch die Optimierung der Datenermittlungs- und -entwicklungsprozesse können Benutzer schneller fundierte Entscheidungen treffen, was letztlich die Effizienz und Effektivität in datengesteuerten Umgebungen verbessert.
- Wachstum von Big Data
Der exponentielle Anstieg der Daten, die aus verschiedenen Quellen wie IoT-Geräten, Social-Media-Plattformen und E-Commerce-Aktivitäten generiert werden, ist ein wichtiger Treiber des Marktes für Data-Science-Plattformen. Diese riesigen Mengen an unstrukturierten und strukturierten Daten erfordern robuste Plattformen für eine effiziente Speicherung, Verarbeitung und Analyse. So brachte Databricks im Januar 2024 eine neue Business-Intelligence-Plattform auf den Markt, die speziell für Telekommunikationsanbieter und Netzwerkdienstleister (NSPs) entwickelt wurde. Diese innovative Plattform stärkt diese Unternehmen, indem sie einen umfassenden Überblick über ihre Netzwerke, Abläufe und Kundeninteraktionen bietet. Wichtig ist, dass sie den Datenschutz gewährleistet und vertrauliches geistiges Eigentum schützt, sodass Telekommunikationsunternehmen fundierte Entscheidungen treffen und gleichzeitig hohe Sicherheitsstandards in ihrem Betrieb aufrechterhalten können.
Gelegenheiten
- Open-Source-Innovation
Open-Source-Innovationen bereichern den Markt für Data-Science-Plattformen erheblich, indem sie zugängliche Tools bereitstellen, die die Zusammenarbeit und schnelle Entwicklung fördern. Plattformen wie Apache Spark und TensorFlow veranschaulichen diesen Trend, indem sie es Datenwissenschaftlern ermöglichen, robuste Bibliotheken ohne hohe Lizenzgebühren zu nutzen. Da Unternehmen nach kostengünstigen Lösungen für maschinelles Lernen und die Verarbeitung großer Datenmengen suchen, übernehmen sie zunehmend diese Open-Source-Frameworks, was zu einem Anstieg der Community-Beiträge und -Erweiterungen führt. Diese kollaborative Umgebung beschleunigt nicht nur die Entwicklung neuer Funktionen, sondern zieht auch einen größeren Talentpool an und schafft Möglichkeiten für Unternehmen, Innovationen zu entwickeln und Wettbewerbsvorteile in einer datengesteuerten Landschaft aufrechtzuerhalten.
- Fortschritte in der prädiktiven Analytik
Der Anstieg der prädiktiven Analytik in den Bereichen Gesundheitswesen, Finanzen und Einzelhandel bietet erhebliche Chancen auf dem Markt für Data-Science-Plattformen. Im Gesundheitswesen werden prädiktive Modelle verwendet, um Patientenergebnisse vorherzusagen und Behandlungspläne zu optimieren, wie man mit Tools wie IBM Watson Health sieht. Im Finanzbereich nutzen Unternehmen prädiktive Analytik für die Kreditwürdigkeitsprüfung und Betrugserkennung, wie beispielsweise die fortschrittlichen Bewertungsalgorithmen von FICO. So brachte die IBM Corporation im Oktober 2022 die Diamondback-Bandbibliothek auf den Markt, eine fortschrittliche Speicherlösung mit LTO-Technologie. Dieses innovative Produkt verfügt über eine beeindruckende Kapazität von bis zu 27 Petabyte (PB) Datenspeicher in einem einzigen Server-Rack. Die Diamondback wurde entwickelt, um den steigenden Anforderungen an die Datenspeicherung gerecht zu werden und bietet Skalierbarkeit und Zuverlässigkeit für Unternehmen, die große Mengen an Informationen sicher und effizient verwalten müssen. Da Unternehmen den Wert prädiktiver Erkenntnisse für die Entscheidungsfindung erkennen, wächst die Nachfrage nach ausgereiften Data-Science-Plattformen, die komplexe Modellierungen und Prognosen bewältigen können, weiter, was lukrative Marktaussichten schafft.
Einschränkungen/Herausforderungen
- Datenschutz- und Sicherheitsbedenken
Datenschutz- und Sicherheitsbedenken behindern den Markt für Data-Science-Plattformen erheblich. Da Unternehmen sich immer mehr auf Datenanalysen verlassen, stehen sie unter zunehmendem Druck, strenge Vorschriften wie die DSGVO und den CCPA einzuhalten. Die Nichteinhaltung kann zu hohen Geldstrafen und Reputationsschäden führen, was Unternehmen dazu veranlasst, bei der Verarbeitung ihrer Daten vorsichtig zu sein. Diese Befürchtungen schränken die Einführung fortschrittlicher Data-Science-Lösungen ein, da Unternehmen möglicherweise Sicherheit über Innovation stellen. Darüber hinaus kann die Notwendigkeit robuster Sicherheitsmaßnahmen die Implementierungskosten und -komplexität erhöhen, was Unternehmen weiter davon abhält, in neue Data-Science-Plattformen zu investieren und das allgemeine Marktwachstum zu verlangsamen.
- Fachkräftemangel
Der Mangel an qualifizierten Fachkräften behindert den Markt für Data-Science-Plattformen erheblich. Die rasante Entwicklung von Data-Science-Technologien hat zu einer erheblichen Talentlücke geführt, und viele Unternehmen haben Schwierigkeiten, qualifizierte Datenwissenschaftler und -analysten zu finden. Dieser Mangel behindert die effektive Nutzung fortschrittlicher Data-Science-Plattformen und führt zu einer unzureichenden Leistung bei Analyseinitiativen. Unternehmen investieren oft in hochentwickelte Tools, können deren Potenzial jedoch nicht voll ausschöpfen, da sie nicht über ausreichende Fachkenntnisse zur Interpretation von Daten und zur Ableitung umsetzbarer Erkenntnisse verfügen. Folglich hemmt dieser Talentmangel Innovationen, verlangsamt Projektlaufzeiten und begrenzt letztendlich das Marktwachstum, da Unternehmen die Data-Science-Fähigkeiten nicht in vollem Umfang nutzen.
Dieser Marktbericht enthält Einzelheiten zu neuen Entwicklungen, Handelsvorschriften, Import-Export-Analysen, Produktionsanalysen, Wertschöpfungskettenoptimierungen, Marktanteilen, Auswirkungen inländischer und lokaler Marktteilnehmer, analysiert Chancen in Bezug auf neue Einnahmequellen, Änderungen der Marktvorschriften, strategische Marktwachstumsanalysen, Marktgröße, Kategoriemarktwachstum, Anwendungsnischen und -dominanz, Produktzulassungen, Produkteinführungen, geografische Expansionen und technologische Innovationen auf dem Markt. Um weitere Informationen zum Markt zu erhalten, wenden Sie sich an Data Bridge Market Research, um einen Analystenbericht zu erhalten. Unser Team hilft Ihnen dabei, eine fundierte Marktentscheidung zu treffen, um Marktwachstum zu erzielen.
Marktumfang für Data-Science-Plattformen
Der Markt ist nach Komponententyp, Funktionsaufteilung, Bereitstellungsmodell, Unternehmensgröße und Endbenutzeranwendung segmentiert. Das Wachstum dieser Segmente hilft Ihnen bei der Analyse schwacher Wachstumssegmente in den Branchen und bietet den Benutzern einen wertvollen Marktüberblick und Markteinblicke, die ihnen bei der strategischen Entscheidungsfindung zur Identifizierung der wichtigsten Marktanwendungen helfen.
Komponententyp
- Plattform
- Dienstleistungen
Professionelle Dienstleistungen
- Support und Wartung
- Beratung
- Bereitstellung und Integration
Verwaltete Dienste
Funktionsaufteilung
- Marketing
- Verkäufe
- Logistik
- Finanz- und Rechnungswesen
- Kundenservice
- Geschäftsabläufe
- Sonstiges
Bereitstellungsmodell
- Vor Ort
- Cloudbasiert
Größe der Organisation
- Kleine und mittlere Unternehmen (KMU)
- Große Unternehmen
Endbenutzeranwendung
- Banken, Finanzdienstleistungen und Versicherungen (BFSI)
- Telekommunikation und IT
- Einzelhandel und E-Commerce
- Gesundheitswesen und Biowissenschaften
- Herstellung
- Energie und Versorgung
- Medien und Unterhaltung
- Transport und Logistik
- Regierung
- Sonstiges
Regionale Analyse des Marktes für Data-Science-Plattformen
Der Markt wird analysiert und es werden Einblicke in die Marktgröße und Trends nach Komponententyp, Funktionsaufteilung, Bereitstellungsmodell, Organisationsgröße und Endbenutzeranwendung wie oben angegeben bereitgestellt.
Die im Marktbericht abgedeckten Länder sind die USA, Kanada, Mexiko in Nordamerika, Deutschland, Schweden, Polen, Dänemark, Italien, Großbritannien, Frankreich, Spanien, Niederlande, Belgien, Schweiz, Türkei, Russland, Restliches Europa in Europa, Japan, China, Indien, Südkorea, Neuseeland, Vietnam, Australien, Singapur, Malaysia, Thailand, Indonesien, Philippinen, Restlicher Asien-Pazifik-Raum (APAC) in Asien-Pazifik (APAC), Brasilien, Argentinien, Restliches Südamerika als Teil von Südamerika, Vereinigte Arabische Emirate, Saudi-Arabien, Oman, Katar, Kuwait, Südafrika, Restlicher Naher Osten und Afrika (MEA) als Teil von Naher Osten und Afrika (MEA).
Nordamerika wird voraussichtlich den Markt für Data-Science-Plattformen dominieren, da die aufstrebenden Länder über eine gut ausgebaute Infrastruktur und niedrige Arbeitskosten verfügen. Darüber hinaus wird erwartet, dass die effektiven After-Sales-Services, die von Herstellern in den Volkswirtschaften angeboten werden, die Expansion im Prognosezeitraum weiter beschleunigen werden.
Im asiatisch-pazifischen Raum wird im Prognosezeitraum aufgrund des rasanten Wachstums der Öl- und Gasexploration in der Region ein deutliches Wachstum erwartet. Chinas große Produktionsbasis für elektronische Artikel trägt maßgeblich zur regionalen Marktexpansion bei.
Der Länderabschnitt des Berichts enthält auch einzelne marktbeeinflussende Faktoren und Änderungen der Marktregulierung, die die aktuellen und zukünftigen Trends des Marktes beeinflussen. Datenpunkte wie Downstream- und Upstream-Wertschöpfungskettenanalysen, technische Trends und Porters Fünf-Kräfte-Analyse sowie Fallstudien sind einige der Anhaltspunkte, die zur Prognose des Marktszenarios für einzelne Länder verwendet werden. Bei der Bereitstellung von Prognoseanalysen der Länderdaten werden auch die Präsenz und Verfügbarkeit globaler Marken und ihre Herausforderungen aufgrund großer oder geringer Konkurrenz durch lokale und inländische Marken sowie die Auswirkungen inländischer Zölle und Handelsrouten berücksichtigt.
Marktanteil von Data-Science-Plattformen
Die Wettbewerbslandschaft des Marktes liefert Einzelheiten zu den einzelnen Wettbewerbern. Die enthaltenen Einzelheiten umfassen Unternehmensübersicht, Unternehmensfinanzen, erzielten Umsatz, Marktpotenzial, Investitionen in Forschung und Entwicklung, neue Marktinitiativen, globale Präsenz, Produktionsstandorte und -anlagen, Produktionskapazitäten, Stärken und Schwächen des Unternehmens, Produkteinführung, Produktbreite und -umfang, Anwendungsdominanz. Die oben angegebenen Datenpunkte beziehen sich nur auf den Fokus der Unternehmen in Bezug auf den Markt.
Die auf dem Markt tätigen Marktführer für Data-Science-Plattformen sind:
- IBM (USA)
- DataRobot Inc., (USA)
- apheris AI GmbH (Deutschland)
- Das digitale Talent-Ökosystem (USA)
- Databand (Israel)
- dotData (USA)
- Explorium Inc., (USA)
- Noogata (Israel)
- Tecton Inc., (USA)
- Spell Designs Pty Ltd (USA)
- Arrikto Inc., (USA)
- Iterativ (USA)
- Google Inc. (USA)
- Microsoft (US)
- SAS Institute Inc., (USA)
- Amazon Web Services, Inc. (USA)
- The MathWorks, Inc. (USA)
- Cloudera Inc., (USA)
- Teradata (USA)
- TIBCO Software Inc. (USA)
- ALTERYX, INC. (USA)
- RapidMiner (USA),
- Databricks (USA)
- Snowflake Inc., (USA)
- H2O.ai (U.S.)
- Altair Inc., (U.S.)
- Anaconda Inc., (U.S.)
- SAP SE (U.S.)
- Domino Data Lab Inc., (U.S.)
- Dataiku (U.S.)
Latest Developments in Data Science Platform Market
- In June 2024, IBM Corporation announced a strategic collaboration with Telefónica Tech aimed at driving the adoption of cutting-edge Artificial Intelligence (AI), analytics, and data governance solutions. This partnership seeks to address the evolving needs of enterprises, enabling them to leverage advanced technologies for improved decision-making, operational efficiency, and enhanced customer experiences in an increasingly complex business environment
- In March 2024, Microsoft revealed a collaboration with NVIDIA focused on enhancing healthcare and life sciences innovation through cloud AI and accelerated computing technologies. This partnership aims to revolutionize patient care by expediting access to precision medicine and AI-driven diagnostics. The initiative is expected to significantly advance the healthcare industry by providing faster, more accurate solutions for diagnosing and treating patients, ultimately improving health outcomes
- In January 2023, Science Applications International Corp. introduced the "Tenjin" data science platform, a versatile solution that supports low-code to full-code development for AI and machine learning applications. Powered by Dataiku, Tenjin facilitates the entire lifecycle of AI and ML model development, from deployment to training and automation, along with advanced data visualization tools. This platform aims to simplify complex processes, making AI accessible to a wider range of businesses
- In October 2022, IBM Corporation launched the Diamondback tape library, an advanced storage solution utilizing LTO technology. This innovative product boasts an impressive capacity of up to 27 petabytes (PB) of data storage within a single server rack. The Diamondback is designed to meet the increasing demands for data storage, offering scalability and reliability for organizations needing to manage vast amounts of information securely and efficiently
- In June 2022, SAS Institute expanded its capabilities by acquiring Kamakura Corporation, enhancing its portfolio with integrated risk solutions. This acquisition focuses on delivering specialized professional services in Asset Liability Management (ALM) and other financial sectors, including banking. By combining resources and expertise, SAS aims to offer comprehensive solutions that address complex risk management challenges, helping organizations make informed financial decisions and navigate market uncertainties effectively
SKU-
Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud
- Interaktives Datenanalyse-Dashboard
- Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
- Zugriff für Research-Analysten für Anpassungen und Abfragen
- Konkurrenzanalyse mit interaktivem Dashboard
- Aktuelle Nachrichten, Updates und Trendanalyse
- Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Forschungsmethodik
Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.
Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.
Anpassung möglich
Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.