Globaler Markt für künstliche neuronale Netze (KNN), nach Typ (Feedback-künstliches neuronales Netz, Feedforward-künstliches neuronales Netz, Sonstiges), Komponente (Lösungen, Plattform/API, Dienste), Anwendung (Bilderkennung, Signalerkennung, Data Mining), Bereitstellungstyp (Cloud, vor Ort), Organisationsstandort (kleine und mittlere Unternehmen, große Unternehmen), Branche (Banken, Finanzdienstleistungen, Versicherungen, Einzelhandel und E-Commerce, Gesundheitswesen und Biowissenschaften, Sonstiges) – Branchentrends und Prognose bis 2029.
Künstliches neuronales Netzwerk (KNN) Marktanalyse und Größe
Ein künstliches neuronales Netzwerk (KNN) ist ein Computermodell, das die Kapazität und den Aufbau des neuronalen Gerüsts im menschlichen Großhirn nachahmt. Die Weiterentwicklung künstlicher Gehirnleistung und die wachsende Akzeptanz der Organisation künstlicher neuronaler Netzwerke im medizinischen Dienstleistungssektor sind wichtige Treiber für den Markt für künstliche neuronale Netzwerke. Faktoren wie die steigende Inanspruchnahme medizinischer Leistungen, eine Zunahme der Krankenhausaufenthalte und eine Zunahme chronischer Krankheiten tragen alle zum Wachstum der Aussichten für die Branche der künstlichen neuronalen Netzwerke bei.
Data Bridge Market Research analysiert, dass der Markt für künstliche neuronale Netze (KNN) im Jahr 2021 einen Wert von 171,58 Millionen USD hatte und bis 2029 voraussichtlich einen Wert von 793,63 Millionen USD erreichen wird, bei einer CAGR von 21,10 % im Prognosezeitraum 2022–2029. Neben Markteinblicken wie Marktwert, Wachstumsrate, Marktsegmenten, geografischer Abdeckung, Marktteilnehmern und Marktszenario enthält der vom Data Bridge Market Research-Team zusammengestellte Marktbericht eine eingehende Expertenanalyse, Import-/Exportanalyse, Preisanalyse, Produktionsverbrauchsanalyse und PESTLE-Analyse.
Marktumfang und -segmentierung für künstliche neuronale Netze (KNN)
Berichtsmetrik |
Einzelheiten |
Prognosezeitraum |
2022 bis 2029 |
Basisjahr |
2021 |
Historische Jahre |
2020 (Anpassbar auf 2014 – 2019) |
Quantitative Einheiten |
Umsatz in Mio. USD, Mengen in Einheiten, Preise in USD |
Abgedeckte Segmente |
Typ (Feedback-Künstliches Neuronales Netzwerk, Feedforward-Künstliches Neuronales Netzwerk, Sonstiges), Komponente (Lösungen, Plattform/API, Dienste), Anwendung (Bilderkennung, Signalerkennung, Data Mining), Bereitstellungstyp (Cloud, Vor Ort), Organisationsstandort (Kleine und mittlere Unternehmen, Große Unternehmen), Branche (Banken, Finanzdienstleistungen, Versicherungen, Einzelhandel und E-Commerce, Gesundheitswesen und Biowissenschaften, Sonstiges) |
Abgedeckte Länder |
USA, Kanada und Mexiko in Nordamerika, Deutschland, Frankreich, Großbritannien, Niederlande, Schweiz, Belgien, Russland, Italien, Spanien, Türkei, Restliches Europa in Europa, China, Japan, Indien, Südkorea, Singapur, Malaysia, Australien, Thailand, Indonesien, Philippinen, Restlicher Asien-Pazifik-Raum (APAC) in Asien-Pazifik (APAC), Saudi-Arabien, Vereinigte Arabische Emirate, Südafrika, Ägypten, Israel, Restlicher Naher Osten und Afrika (MEA) als Teil von Naher Osten und Afrika (MEA), Brasilien, Argentinien und Restliches Südamerika als Teil von Südamerika |
Abgedeckte Marktteilnehmer |
IBM Corporation (USA), nDimensional (USA), Alyuda Research, LLC. (USA), Microsoft (USA), SAP SE (Deutschland), Starmind (Schweiz), Afiniti (Bermuda), Ward Systems Group, Inc. (USA), Google LLC (USA), NeuralWare (USA), Qualcomm Technologies, Inc. (USA), Intel Corporation (USA), Oracle (USA), Microsoft (USA) |
Marktchancen |
|
Marktdefinition
Künstliche neuronale Netze (KNN) sind eine wichtige Teilmenge des maschinellen Lernens, die Informatiker bei komplexen Aufgaben wie Strategieentwicklung, Prognosen und Trenderkennung unterstützt. Künstliche neuronale Netze sind nicht wie andere maschinelle Lernverfahren. Algorithmen die Zahlen verarbeiten oder Daten organisieren; stattdessen lernen sie aus Erfahrung und wiederholten Aufgaben ihrer Benutzer. Ein neuronales Netzwerk ist eine andere Bezeichnung für ein künstliches neuronales Netzwerk.
Treiber
- Hohe Durchdringung prädiktiver Analysen
Wichtige ANN-Funktionen wie die Vorhersage des Verbraucherverhaltens und Umsatzprognosen werden voraussichtlich den Markt für künstliche neuronale Netze im Prognosezeitraum antreiben. Die rasche Digitalisierung wird voraussichtlich die Einführung künstlicher neuronaler Netzplattformen beschleunigen. Darüber hinaus werden künstliche neuronale Netze häufig im Bereich der prädiktiven Analytik eingesetzt. Durch das Erkennen von Trends aus früheren Marketingkampagnen unterstützen künstliche neuronale Netze Vermarkter bei der Vorhersage des Ergebnisses einer Kampagne. Obwohl neuronale Netze schon seit einiger Zeit existieren, hat der jüngste Aufstieg von Big Data diese Technologie im Bereich Marketing äußerst nützlich gemacht.
- Hohe Auslastung durch Schwellen- und Industrieländer
Künstliche neuronale Netze in der Verarbeitung natürlicher Sprache, bei Chatbots, in der Arzneimittelforschung und bei Börsenprognosen haben die Technologie sowohl in Schwellen- als auch in Industrieländern populärer gemacht. Die Integration von Deep Learning und KI in die bestehende ANN-Lösung wird führende Unternehmen dazu ermutigen, Investitionen in neuronale Netzsoftware und -dienste zu priorisieren. Der IT- und Telekommunikationssektor wird aufgrund der zunehmenden Verbreitung von Cloud-Computing-Lösungen eine hohe Nachfrage nach neuronaler Netzsoftware und -diensten haben.
Darüber hinaus ist die wachsende Popularität von PaaS, Security as a Service (SECaaS) und Function as a Service (FaaS) im IT-Sektor ein gutes Zeichen für führende Unternehmen, die das Wachstum des Marktes für neuronale Netzwerke beschleunigen möchten. Darüber hinaus hat Convolutional Neural Network (CNN) in Anwendungen der künstlichen Intelligenz (KI) wie der Verarbeitung natürlicher Sprache, der Textdigitalisierung, der Gesichtserkennung, der Signalverarbeitung und der Paranoiaerkennung an Popularität gewonnen.
Gelegenheit
- Aggressive Strategien der Marktteilnehmer
Branchenteilnehmer gehen davon aus, dass sie in organische und anorganische Strategien investieren werden, um ihre Marktdurchdringung in bisher unerschlossene Bereiche auszuweiten. Führende Unternehmen könnten daher in Fusionen und Übernahmen, Forschung und Entwicklung, Produkteinführungen und Produktneueinführungen investieren.
Beschränkungen
- Tracking-Schwierigkeiten
Allerdings sind die zunehmenden Schwierigkeiten bei der Nachverfolgung der Ergebnisse in den Prozessphasen ein kritischer Faktor unter anderen, der das Marktwachstum begrenzen wird, während Extrapolationsprobleme bei neuronalen Netzwerken im oben genannten Prognosezeitraum ein Nachteil für den Markt sein werden.
Dieser Marktbericht für künstliche neuronale Netzwerke (KNN) enthält Einzelheiten zu neuen Entwicklungen, Handelsvorschriften, Import-Export-Analysen, Produktionsanalysen, Wertschöpfungskettenoptimierungen, Marktanteilen, Auswirkungen inländischer und lokaler Marktteilnehmer, analysiert Chancen in Bezug auf neu entstehende Einnahmequellen, Änderungen der Marktvorschriften, strategische Marktwachstumsanalysen, Marktgröße, Kategoriemarktwachstum, Anwendungsnischen und -dominanz, Produktzulassungen, Produkteinführungen, geografische Expansionen und technologische Innovationen auf dem Markt. Um weitere Informationen zum Markt für künstliche neuronale Netzwerke (KNN) zu erhalten, wenden Sie sich an Data Bridge Market Research, um einen Analystenbericht zu erhalten. Unser Team hilft Ihnen dabei, eine fundierte Marktentscheidung zu treffen, um Marktwachstum zu erzielen.
Auswirkungen von COVID-19 auf den Markt für künstliche neuronale Netze (KNN)
Das Coronavirus ist eine einzigartige globale Krise der öffentlichen Gesundheit, die nahezu jede Branche betroffen hat. Die langfristigen Auswirkungen werden voraussichtlich die Geschäftsentwicklung während des Abbildungszeitraums beeinflussen. Diese laufende Untersuchung stärkt das Untersuchungssystem, um sicherzustellen, dass grundlegende COVID-19-Probleme und gemeinsame Vorgehensweisen berücksichtigt werden. Der Bericht verbreitet Informationen zu COVID-19 und berücksichtigt dabei Änderungen im Käuferverhalten und bei Käuferanfragen, Kaufmustern, der Umleitung des Inventarnetzwerks, Elemente der aktuellen Markteinflüsse auf künstliche neuronale Netzwerke und kritische Vermittlungsregierungen. Die aktualisierte Untersuchung gibt Einblicke in die Netzwerkausführung, einen Zyklus, der die Funktionen des menschlichen Geistes durch eine Vielzahl tiefgreifender Lernfortschritte konsolidieren und komplexe Probleme bei der Beispielerkennung oder Zeichenverarbeitung angehen soll. Es gibt Wettervorhersagen, Handschrifterkennung, Öluntersuchungsinformationsanalyse, Gesichtserkennung, Gesprächs-zu-Nachrichten-Aufzeichnung und andere Anwendungen der neuronalen Organisation.
Die neueste Entwicklung
- Am 3. November 2021 gab die Oracle Corporation die Verfügbarkeit neuer KI-Dienste auf der Oracle Cloud-Infrastruktur (OCI) bekannt. Mit den neuen OCI-KI-Diensten können Entwickler vorab trainierte, sofort einsatzbereite Modelle für geschäftsbezogene Daten verwenden oder die Dienste mit unternehmensspezifischen Daten individuell trainieren.
- Am 29. Oktober 2021 gab Google LLC die Veröffentlichung von Pathways bekannt, einer neuen KI-Lösung, die die Funktionen mehrerer ML-Lösungen auf einem einzigen KI-System kombiniert.
Globaler Marktumfang für künstliche neuronale Netze (KNN)
Der Markt für künstliche neuronale Netze (KNN) ist nach Typ, Komponente, Anwendung, Bereitstellungstyp, Organisationsstandort und Branche segmentiert. Das Wachstum dieser Segmente hilft Ihnen bei der Analyse schwacher Wachstumssegmente in den Branchen und bietet den Benutzern einen wertvollen Marktüberblick und Markteinblicke, die ihnen bei der strategischen Entscheidungsfindung zur Identifizierung der wichtigsten Marktanwendungen helfen.
Typ
- Feedback Künstliches neuronales Netzwerk
- Feedforward Künstliches Neuronales Netzwerk
- Andere
Komponente
- Lösungen
- Plattform/API
- Dienstleistungen
Anwendung
- Bilderkennung
- Signalerkennung
- Datengewinnung
Bereitstellungstyp
- Wolke
- Vor Ort
Größe der Organisation
- Kleine und mittelständische Unternehmen
- Große Unternehmen
Industrie
- Bankwesen
- Finanzdienstleistungen
- Versicherung
- Einzelhandel und E-Commerce
- Gesundheitswesen und Biowissenschaften
- Andere
Künstliches neuronales Netzwerk (KNN) Marktregionale Analyse/Einblicke
Der Markt für künstliche neuronale Netzwerke (KNN) wird analysiert und es werden Einblicke in die Marktgröße und Trends nach Land, Typ, Komponente, Anwendung, Bereitstellungstyp, Organisationsstandort und Branche wie oben angegeben bereitgestellt.
Die im Marktbericht für künstliche neuronale Netze (KNN) abgedeckten Länder sind die USA, Kanada und Mexiko in Nordamerika, Deutschland, Frankreich, Großbritannien, Niederlande, Schweiz, Belgien, Russland, Italien, Spanien, Türkei, Restliches Europa in Europa, China, Japan, Indien, Südkorea, Singapur, Malaysia, Australien, Thailand, Indonesien, Philippinen, Restlicher Asien-Pazifik-Raum (APAC) in Asien-Pazifik (APAC), Saudi-Arabien, Vereinigte Arabische Emirate, Südafrika, Ägypten, Israel, Restlicher Naher Osten und Afrika (MEA) als Teil von Naher Osten und Afrika (MEA), Brasilien, Argentinien und Restliches Südamerika als Teil von Südamerika.
Der nordamerikanische Markt dürfte die größte Nachfrage nach künstlichen neuronalen Netzwerken aufweisen. Die Vereinigten Staaten werden voraussichtlich erheblich in den Bereich der synthetischen Intelligenz investieren. Auch die rasche Einführung von Technologien in der Luft- und Raumfahrt sowie im Verteidigungssektor dürfte die Marktnachfrage in den kommenden Jahren ankurbeln.
Aufgrund technologischer Fortschritte und Forschungsaktivitäten in den Bereichen Militär, Bank- und Finanzwesen, Automobil- und Transportwesen sowie Elektronik und Telekommunikation dürfte die Region Asien-Pazifik in den kommenden Jahren rasch wachsen. Die Region ist ein bedeutender Hersteller und Entwickler von Elektronik, Automobilen und Telekommunikationsgeräten.
Der Länderabschnitt des Berichts enthält auch individuelle marktbeeinflussende Faktoren und Änderungen der Marktregulierung, die die aktuellen und zukünftigen Trends des Marktes beeinflussen. Datenpunkte wie Downstream- und Upstream-Wertschöpfungskettenanalysen, technische Trends und Porters Fünf-Kräfte-Analyse sowie Fallstudien sind einige der Anhaltspunkte, die zur Prognose des Marktszenarios für einzelne Länder verwendet werden. Bei der Bereitstellung von Prognoseanalysen der Länderdaten werden auch die Präsenz und Verfügbarkeit globaler Marken und ihre Herausforderungen aufgrund großer oder geringer Konkurrenz durch lokale und inländische Marken sowie die Auswirkungen inländischer Zölle und Handelsrouten berücksichtigt.
Wettbewerbsumfeld und Künstliches Neuronales Netz (KNN) Marktanteilsanalyse
Die Wettbewerbslandschaft des Marktes für künstliche neuronale Netze (KNN) liefert Details nach Wettbewerbern. Zu den Details gehören Unternehmensübersicht, Unternehmensfinanzen, erzielter Umsatz, Marktpotenzial, Investitionen in Forschung und Entwicklung, neue Marktinitiativen, globale Präsenz, Produktionsstandorte und -anlagen, Produktionskapazitäten, Stärken und Schwächen des Unternehmens, Produkteinführung, Produktbreite und -umfang, Anwendungsdominanz. Die oben angegebenen Datenpunkte beziehen sich nur auf den Fokus der Unternehmen in Bezug auf den Markt für künstliche neuronale Netze (KNN).
Zu den wichtigsten Akteuren auf dem Markt für künstliche neuronale Netze (KNN) zählen:
Neural Technologies Limited
- IBM Corporation (USA)
- nDimensional (US)
- Alyuda Research, LLC. (USA)
- Microsoft (US)
- SAP SE (Deutschland)
- Starmind (Schweiz)
- Affinität (Bermuda)
- Ward Systems Group, Inc. (USA)
- Google LLC (USA)
- NeuralWare (USA)
- Qualcomm Technologies, Inc. (USA)
- Intel Corporation (USA)
- Oracle (USA)
- Microsoft (US)
Artikelnummer-