Global Artificial Intelligence In Supply Chain Market
Marktgröße in Milliarden USD
CAGR : %
Prognosezeitraum |
2023 –2029 |
Marktgröße (Basisjahr) | |
Marktgröße (Prognosejahr) | |
CAGR |
|
Wichtige Marktteilnehmer |
|
>Globaler Markt für künstliche Intelligenz in der Lieferkette, nach Angebot (Hardware, Software und Dienstleistungen), Technologie (Maschinelles Lernen, Verarbeitung natürlicher Sprache, kontextbezogenes Computing und Computer Vision), Anwendung (Flottenmanagement, Lieferkettenplanung, Lagerverwaltung, virtueller Assistent, Risikomanagement, Frachtvermittlung und andere), Branche (Automobilindustrie, Luft- und Raumfahrt, Einzelhandel, Fertigung, Gesundheitswesen, Konsumgüter und Lebensmittel und Getränke), Land (USA, Kanada, Mexiko, Brasilien, Argentinien, übriges Südamerika, Deutschland, Frankreich, Italien, Großbritannien, Belgien, Spanien, Russland, Türkei, Niederlande, Schweiz, übriges Europa, Japan, China, Indien, Südkorea, Australien, Singapur, Malaysia, Thailand, Indonesien, Philippinen, übriger asiatisch-pazifischer Raum, Vereinigte Arabische Emirate, Saudi-Arabien, Ägypten, Südafrika, Israel, übriger Naher Osten und Afrika) Branchentrends und Prognose bis 2029
Marktanalyse und Einblicke in den Markt für künstliche Intelligenz im Supply Chain-Bereich
Der Anstieg der Internetdurchdringung, insbesondere in Entwicklungsländern, der wachsende Fokus auf die Verbesserung der Unternehmensleistung und der Betriebseffizienz sowie die zunehmende Einführung fortschrittlicher Technologien wie künstlicher Intelligenz durch kleine und mittlere Unternehmen sind die Hauptfaktoren, die zum Wachstum des Marktes für künstliche Intelligenz in der Lieferkette beitragen. Data Bridge Market Research analysiert, dass der Markt für künstliche Intelligenz in der Lieferkette im Prognosezeitraum 2022–2029 eine durchschnittliche jährliche Wachstumsrate (CAGR) von 8,60 % aufweisen wird. Daher würde der Marktwert für künstliche Intelligenz in der Lieferkette bis 2029 54,51 Millionen USD betragen.
Künstliche Intelligenz in der Lieferkette trägt dazu bei, die Gesamtleistung der Lieferkette zu verbessern, indem sie kognitive Vorhersagen und Empfehlungen zu optimalen Maßnahmen verwendet. Künstliche Intelligenz wird in Lieferkettenanwendungen verwendet, um Prozesse wie die Zuweisung von Ressourcen, die Zuweisung von Arbeit an Personen usw. zu automatisieren.
Die zunehmende Digitalisierung der Volkswirtschaften, insbesondere der Schwellenländer, wird sich als der wichtigste Wachstumsfaktor für den Markt herausstellen. Die steigende Nachfrage nach mehr Sichtbarkeit und Transparenz in der Lieferkette und in Logistikdaten, die wachsende Generierung großer Daten- und Informationsmengen, die zunehmende Akzeptanz bei kleinen und mittleren Unternehmen und die Stärkung der IT-Branche in Entwicklungsländern wie Indien und China werden das Wachstum des Marktes weiter vorantreiben. Die zunehmende Verbreitung von Cloud-basierten Diensten und eine immer größere Anzahl günstiger staatlicher Vorschriften sind weitere Faktoren, die das Wachstum des Marktes fördern.
Der Mangel an technologischem Know-how in unterentwickelten und sich entwickelnden Volkswirtschaften wird jedoch als Wachstumshemmnis für den Markt wirken. Auch der Mangel an Arbeitskräften und die steigenden Kosten dafür werden das Marktwachstum erneut hemmen. Der Mangel an starken Infrastruktureinrichtungen in den rückständigen Volkswirtschaften und die Komplexitäten im Zusammenhang mit der Kodierung künstlicher Intelligenz werden das Marktwachstum ebenfalls beeinträchtigen.
Dieser Marktbericht über künstliche Intelligenz in der Lieferkette enthält Einzelheiten zu neuen Entwicklungen, Handelsvorschriften, Import-Export-Analysen, Produktionsanalysen, Wertschöpfungskettenoptimierungen, Marktanteilen, Auswirkungen inländischer und lokaler Marktteilnehmer, analysiert Chancen in Bezug auf neu entstehende Einnahmequellen, Änderungen der Marktvorschriften, strategische Marktwachstumsanalysen, Marktgröße, Kategoriemarktwachstum, Anwendungsnischen und -dominanz, Produktzulassungen, Produkteinführungen, geografische Expansionen und technologische Innovationen auf dem Markt. Um weitere Informationen zum Markt für künstliche Intelligenz in der Lieferkette zu erhalten, wenden Sie sich an Data Bridge Market Research, um ein Analyst Briefing zu erhalten . Unser Team hilft Ihnen dabei, eine fundierte Marktentscheidung zu treffen, um Marktwachstum zu erzielen.
Globaler Marktumfang und Marktgröße für künstliche Intelligenz in der Lieferkette
Der Markt für künstliche Intelligenz in der Lieferkette ist nach Angebot, Technologie, Anwendung und Branche segmentiert. Das Wachstum in den verschiedenen Segmenten hilft Ihnen dabei, Kenntnisse über die verschiedenen Wachstumsfaktoren zu erlangen, die voraussichtlich auf dem gesamten Markt vorherrschen werden, und verschiedene Strategien zu entwickeln, um die wichtigsten Anwendungsbereiche und die Unterschiede in Ihrem Zielmarkt zu identifizieren.
- Künstliche Intelligenz im Lieferkettenmarkt wurde auf der Grundlage des Angebots in Hardware, Software und Dienstleistungen segmentiert.
- Basierend auf der Technologie wurde der Markt für künstliche Intelligenz im Lieferkettenbereich in maschinelles Lernen, Verarbeitung natürlicher Sprache , kontextsensitives Computing und Computersehen segmentiert.
- Auf der Grundlage der Anwendung wurde der Markt für künstliche Intelligenz im Lieferkettengeschäft in Flottenmanagement , Lieferkettenplanung, Risikomanagement, Lagerverwaltung, virtuelle Assistenten, Frachtvermittlung und andere segmentiert.
- Auf Branchenbasis wurde der Markt für künstliche Intelligenz in der Lieferkette in die Branchen Automobil, Luft- und Raumfahrt, Fertigung, Einzelhandel, Gesundheitswesen, Konsumgüter sowie Lebensmittel und Getränke unterteilt.
Künstliche Intelligenz in der Lieferkette Markt – Länderebene Analyse
Der Markt für künstliche Intelligenz in der Lieferkette wird analysiert und Informationen zu Marktgröße und Volumen werden wie oben angegeben nach Land, Angebot, Technologie, Anwendung und Branche bereitgestellt.
Die im Marktbericht über künstliche Intelligenz in der Lieferkette abgedeckten Länder sind die USA, Kanada und Mexiko in Nordamerika, Deutschland, Frankreich, Großbritannien, Niederlande, Schweiz, Belgien, Russland, Italien, Spanien, Türkei, Restliches Europa in Europa, China, Japan, Indien, Südkorea, Singapur, Malaysia, Australien, Thailand, Indonesien, Philippinen, Restlicher asiatisch-pazifischer Raum (APAC) in Asien-Pazifik (APAC), Saudi-Arabien, Vereinigte Arabische Emirate, Israel, Ägypten, Südafrika, Restlicher Naher Osten und Afrika (MEA) als Teil von Naher Osten und Afrika (MEA), Brasilien, Argentinien und Restliches Südamerika als Teil von Südamerika.
Nordamerika dominiert den Markt für künstliche Intelligenz im Lieferkettenbereich und wird seinen Dominanztrend im Prognosezeitraum aufgrund der starken Präsenz wichtiger Akteure und der Präsenz entwickelter Volkswirtschaften, die sich auf die Verbesserung bestehender Lösungen im Lieferkettenbereich konzentrieren, weiter ausbauen. Der asiatisch-pazifische Raum wird im Prognosezeitraum weiterhin erhebliche Zuwächse verzeichnen und die höchste durchschnittliche jährliche Wachstumsrate erzielen. Dies ist auf die Präsenz einer jungen und technisch versierten Bevölkerung in dieser Region und die zunehmende Verbreitung des Internets der Dinge (IoT) zurückzuführen.
Der Länderabschnitt des Marktberichts über künstliche Intelligenz in der Lieferkette enthält auch individuelle marktbeeinflussende Faktoren und Änderungen der Regulierung auf dem Inlandsmarkt, die sich auf die aktuellen und zukünftigen Trends des Marktes auswirken. Datenpunkte wie Verbrauchsmengen, Produktionsstandorte und -mengen, Import-Export-Analyse, Preistrendanalyse, Rohstoffkosten, Downstream- und Upstream-Wertschöpfungskettenanalyse sind einige der wichtigsten Anhaltspunkte, die zur Prognose des Marktszenarios für einzelne Länder verwendet werden. Bei der Prognoseanalyse der Länderdaten werden auch die Präsenz und Verfügbarkeit globaler Marken und ihre Herausforderungen aufgrund großer oder geringer Konkurrenz durch lokale und inländische Marken sowie die Auswirkungen inländischer Zölle und Handelsrouten berücksichtigt.
Wettbewerbsumfeld und Künstliche Intelligenz in der Lieferkette Marktanteilsanalyse
Die Wettbewerbslandschaft des Marktes für künstliche Intelligenz in der Lieferkette liefert Details nach Wettbewerbern. Die enthaltenen Details sind Unternehmensübersicht, Unternehmensfinanzen, erzielter Umsatz, Marktpotenzial, Investitionen in Forschung und Entwicklung, neue Marktinitiativen, globale Präsenz, Produktionsstandorte und -anlagen, Produktionskapazitäten, Stärken und Schwächen des Unternehmens, Produkteinführung, Produktbreite und -umfang, Anwendungsdominanz. Die oben angegebenen Datenpunkte beziehen sich nur auf den Fokus der Unternehmen in Bezug auf künstliche Intelligenz im Lieferkettenmarkt.
Zu den wichtigsten Akteuren auf dem Markt für künstliche Intelligenz im Supply-Chain-Bereich zählen unter anderem Amazon Web Services, Inc., project44., Deutsche Post AG, FedEx, GENERAL ELECTRIC, Google LLC, IBM, Intel Corporation, Coupa Software Inc., Micron Technology, Inc., Microsoft, NVIDIA Corporation, Oracle., SAP SE, SAMSUNG, Xilinx, Fraight AI, CH Robinson Worldwide, Inc., E2open, LLC., RELEX Solutions, SKF Group, Cainiao Network, Splice Machine und American Software, Inc.
SKU-
Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud
- Interaktives Datenanalyse-Dashboard
- Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
- Zugriff für Research-Analysten für Anpassungen und Abfragen
- Konkurrenzanalyse mit interaktivem Dashboard
- Aktuelle Nachrichten, Updates und Trendanalyse
- Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Forschungsmethodik
Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.
Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.
Anpassung möglich
Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.