Global Ai In Patient Management Market
Marktgröße in Milliarden USD
CAGR : %
Prognosezeitraum |
2024 –2031 |
Marktgröße (Basisjahr) | USD 1.99 Billion |
Marktgröße (Prognosejahr) | USD 15.13 Billion |
CAGR |
|
Wichtige Marktteilnehmer |
>Globaler Markt für KI im Patientenmanagement, nach Technologie (Maschinelles Lernen, NLP), Anwendung (Analyse von Gesundheitsakten, Musteranalyse, standortbasierte Analyse, anamnesebasierte Terminvereinbarung, sonstige), Endbenutzer (Krankenhäuser, Diagnosezentren, ambulante chirurgische Zentren , sonstige) – Branchentrends und Prognose bis 2031.
KI im Patientenmanagement – Marktanalyse und -größe
Künstliche Intelligenz (KI) im Patientenmanagement entwickelt sich rasant und zielt darauf ab, die Qualität der Pflege zu verbessern, Kosten zu senken und das Patientenerlebnis insgesamt zu verbessern. Dies wird durch die Nutzung von Automatisierung und datengesteuerten Erkenntnissen erreicht, die das medizinische Fachpersonal bei der Entscheidungsfindung und Patienteninteraktion unterstützen. Alle von Gesundheitseinrichtungen verwendeten Patientenmanagementsoftwares nutzen künstliche Intelligenz, um Überwachung, Diagnose und Behandlung zu erleichtern. Zunehmende Gesundheitsdaten und eine höhere Komplexität der Datensätze sind die Hauptfaktoren, die die Marktexpansion vorantreiben und den Einsatz von KI in Patientenmanagementsoftware erforderlich machen.
Data Bridge Market Research analysiert, dass der globale Markt für KI im Patientenmanagement, der im Jahr 2023 1,99 Milliarden USD betrug, bis 2031 voraussichtlich 15,13 Milliarden USD erreichen wird und im Prognosezeitraum eine durchschnittliche jährliche Wachstumsrate von 28,90 % aufweisen wird. „Krankenhäuser“ haben den größten Marktanteil im Endbenutzersegment von KI im Patientenmanagementmarkt, da sie Vorteile bei der Verwaltung großer Patientendaten bieten. Neben Einblicken in Marktszenarien wie Marktwert, Wachstumsrate, Segmentierung, geografische Abdeckung und wichtige Akteure enthalten die von Data Bridge Market Research zusammengestellten Marktberichte auch eingehende Expertenanalysen, Patientenepidemiologie, Pipeline-Analysen, Preisanalysen und regulatorische Rahmenbedingungen.
Berichtsumfang und Marktsegmentierung
Berichtsmetrik |
Details |
Prognosezeitraum |
2024 bis 2031 |
Basisjahr |
2023 |
Historische Jahre |
2022 (anpassbar auf 2016–2021) |
Quantitative Einheiten |
Umsatz in Mrd. USD, Volumen in Einheiten, Preise in USD |
Abgedeckte Segmente |
Nach Technologie (Maschinelles Lernen, NLP), Anwendung (Analyse von Gesundheitsakten, Musteranalyse, standortbasierte Analyse, anamnesebasierte Terminvereinbarung, Sonstiges), Endbenutzer (Krankenhäuser, Diagnosezentren, ambulante chirurgische Zentren, Sonstiges) |
Abgedeckte Länder |
USA, Kanada, Mexiko, Deutschland, Frankreich, Großbritannien, Niederlande, Schweiz, Belgien, Russland, Italien, Spanien, Türkei, Restliches Europa, China, Japan, Indien, Südkorea, Singapur, Malaysia, Australien, Thailand, Indonesien, Philippinen, Restlicher Asien-Pazifik-Raum, Saudi-Arabien, Vereinigte Arabische Emirate, Südafrika, Ägypten, Israel, Restlicher Naher Osten und Afrika, Brasilien, Argentinien, Restliches Südamerika. |
Abgedeckte Marktteilnehmer |
Welltok Inc (USA), Intel Corporation (USA), NVIDIA Corporation (USA), Google LLC (USA), International Business Machines Corporation (IBM) (USA), Microsoft Corporation (USA), Geneva Vision, Inc. (USA), Enlitic, Inc. (USA), Next IT Corporation (USA), iCarbonX (China), Octopus Health (USA), Sweetech Health Ltd (Großbritannien), Superwise.ai (USA) |
Marktchancen |
|
Marktdefinition
KI im Patientenmanagement bezieht sich auf die Anwendung von Technologien der künstlichen Intelligenz zur Rationalisierung und Verbesserung verschiedener Aspekte der Gesundheitsversorgung und Patientenbetreuung. Dazu gehören Aufgaben wie die Automatisierung administrativer Prozesse, die Analyse riesiger Datensätze für personalisierte Behandlungspläne und die Erleichterung der Fernüberwachung von Patienten. KI im Patientenmanagement nutzt maschinelle Lernalgorithmen zur Interpretation medizinischer Daten, zur Unterstützung bei der Diagnose, zur Vorhersage von Krankheitsausgängen und zur Optimierung von Behandlungsstrategien. Darüber hinaus kann sie die Effizienz von Arbeitsabläufen im Gesundheitswesen verbessern, den Verwaltungsaufwand für medizinisches Fachpersonal verringern und zur Entwicklung der Präzisionsmedizin beitragen, indem sie Interventionen auf der Grundlage individueller Patientenmerkmale maßschneidert. Die Integration von KI-Technologien birgt auch das Potenzial, die Interaktion zwischen Patient und Arzt zu verändern, Telemedizin-Initiativen zu unterstützen und die allgemeinen Gesundheitsergebnisse durch datengesteuerte Erkenntnisse und proaktives Gesundheitsmanagement zu verbessern.
Globale KI im Patientenmanagement-Marktdynamik
Treiber
- Steigende Nachfrage nach Effizienz und Automatisierung
KI optimiert Arbeitsabläufe im Gesundheitswesen durch die Automatisierung routinemäßiger Aufgaben wie Terminplanung, administrativer Papierkram und Abrechnungsprozesse. Dies reduziert den Verwaltungsaufwand für das medizinische Fachpersonal und ermöglicht es ihm, mehr Zeit für die Patienteninteraktion und die medizinische Versorgung aufzuwenden. Das Ergebnis ist eine verbesserte allgemeine Betriebseffizienz in Gesundheitseinrichtungen.
- Fortschritte bei der Datenanalyse und -einsicht
Mithilfe der Datenanalysefunktionen von KI können Gesundheitsdienstleister große Mengen an Patientendaten, einschließlich elektronischer Gesundheitsakten (EHRs), durchgehen, um aussagekräftige Erkenntnisse zu gewinnen. Diese Analyse geht über die menschliche Kapazität hinaus, erkennt Muster, prognostiziert Krankheitsrisiken und bietet personalisierte Behandlungsempfehlungen. Diese datengesteuerten Erkenntnisse verbessern die klinische Entscheidungsfindung und führen letztendlich zu einer effektiveren und maßgeschneiderten Patientenversorgung.
- Zunahme der Patientenfernüberwachung
Bei der KI-gesteuerten Fernüberwachung werden vernetzte Geräte verwendet, um den Gesundheitszustand von Patienten in Echtzeit zu verfolgen. Tragbare Sensoren und andere IoT-Geräte erfassen Daten zu Vitalfunktionen, Medikamenteneinnahmetreue und allgemeinen Gesundheitstrends. KI-Algorithmen analysieren diese Informationen und warnen medizinisches Fachpersonal rechtzeitig vor potenziellen Problemen. Dieser proaktive Ansatz ermöglicht ein frühzeitiges Eingreifen, reduziert Krankenhauswiederaufnahmen und fördert ein präventiveres und personalisierteres Gesundheitsmodell.
Gelegenheiten
- Fortschritte in der Präzisionsmedizin
KI wird die Präzisionsmedizin revolutionieren, indem sie riesige Datensätze analysiert, darunter genetische Informationen, Lebensstilfaktoren und Umwelteinflüsse. Durch die Identifizierung komplexer Muster und Korrelationen in diesen Daten können KI-Algorithmen maßgeschneiderte Behandlungspläne anbieten, die auf die einzigartige genetische Ausstattung und das Gesundheitsprofil eines Individuums zugeschnitten sind. Dieser personalisierte Ansatz verspricht, die Wirksamkeit der Behandlung zu optimieren, Nebenwirkungen zu reduzieren und eine neue Ära gezielter Therapien einzuläuten.
- Anstieg der prädiktiven Analytik im Gesundheitswesen
Die Integration von KI in prädiktive Analysen ermöglicht es Gesundheitsfachkräften, Krankheitstrends vorherzusehen, gefährdete Bevölkerungsgruppen zu identifizieren und individuelle Gesundheitsverläufe vorherzusagen. Durch die Analyse historischer Daten und Echtzeitinformationen können KI-Modelle wertvolle Erkenntnisse für präventive Interventionen, die Früherkennung von Gesundheitsproblemen und die Optimierung der Ressourcenzuweisung liefern. Dieser proaktive Ansatz hat das Potenzial, die Ergebnisse der öffentlichen Gesundheit deutlich zu verbessern, die Gesundheitskosten zu senken und den Fokus von reaktiven auf präventive Gesundheitsstrategien zu verlagern.
Einschränkungen/Herausforderungen
- Datenschutz- und Sicherheitsbedenken
Der Schutz von Patientendaten vor unbefugtem Zugriff, Datenlecks und Missbrauch ist eine entscheidende Herausforderung. Die Integration von KI in die Patientenverwaltung erfordert robuste Cybersicherheitsmaßnahmen und die strikte Einhaltung von Datenschutzbestimmungen wie HIPAA. Um die potenziellen Vorteile von KI mit der Notwendigkeit abzuwägen, die Patientenvertraulichkeit zu schützen, sind fortlaufende Sorgfalt und Investitionen in sichere Datenverarbeitungspraktiken erforderlich.
- Interoperabilitätsprobleme
Gesundheitssysteme nutzen oft unterschiedliche Plattformen und Technologien, die nur schwer nahtlos miteinander kommunizieren. Interoperabilitätsprobleme behindern den effizienten Austausch von Patientendaten und beeinträchtigen die Wirksamkeit von KI-Anwendungen. Die Standardisierung von Datenformaten und Protokollen ist unerlässlich, um diese Interoperabilitätslücken zu schließen und ein zusammenhängendes Gesundheitsökosystem zu fördern, in dem KI zu einem ganzheitlichen Patientenmanagement beitragen kann.
Dieser Marktbericht zu KI im Patientenmanagement enthält Einzelheiten zu neuen Entwicklungen, Handelsvorschriften, Import-Export-Analysen, Produktionsanalysen, Wertschöpfungskettenoptimierungen, Marktanteilen, Auswirkungen inländischer und lokaler Marktteilnehmer, analysiert Chancen in Bezug auf neue Einnahmequellen, Änderungen der Marktvorschriften, strategische Marktwachstumsanalysen, Marktgröße, Kategoriemarktwachstum, Anwendungsnischen und -dominanz, Produktzulassungen, Produkteinführungen, geografische Expansionen und technologische Innovationen auf dem Markt. Um weitere Informationen zum Markt für KI im Patientenmanagement zu erhalten, wenden Sie sich an Data Bridge Market Research, um ein Analyst Briefing zu erhalten. Unser Team hilft Ihnen dabei, eine fundierte Marktentscheidung zu treffen, um Marktwachstum zu erzielen.
Globaler Marktumfang für KI im Patientenmanagement
Der Markt für KI im Patientenmanagement ist nach Technologie, Anwendung und Endbenutzer segmentiert. Das Wachstum dieser Segmente hilft Ihnen bei der Analyse schwacher Wachstumssegmente in den Branchen und bietet den Benutzern einen wertvollen Marktüberblick und Markteinblicke, die ihnen bei der strategischen Entscheidungsfindung zur Identifizierung der wichtigsten Marktanwendungen helfen.
Technologie
- Maschinenlernen
- NLP
Anwendung
- Analyse der Gesundheitsakte
- Musteranalyse
- Standortbasierte Analyse
- Termin auf Basis der Krankengeschichte
- Sonstiges
Endbenutzer
- Krankenhäuser
- Diagnostikzentren
- Ambulante Chirurgische Zentren
- Sonstiges
Globale KI im Patientenmanagement-Markt – Regionale Analyse/Einblicke
Der Markt für KI im Patientenmanagement wird analysiert und es werden Einblicke in die Marktgröße und Trends nach Land, Technologie, Anwendung und Endbenutzer wie oben angegeben bereitgestellt.
Die im Marktbericht zu KI im Patientenmanagement abgedeckten Länder sind die USA, Kanada, Mexiko, Deutschland, Frankreich, Großbritannien, Niederlande, Schweiz, Belgien, Russland, Italien, Spanien, Türkei, übriges Europa, China, Japan, Indien, Südkorea, Singapur, Malaysia, Australien, Thailand, Indonesien, Philippinen, übriger asiatisch-pazifischer Raum, Saudi-Arabien, Vereinigte Arabische Emirate, Südafrika, Ägypten, Israel, übriger Naher Osten und Afrika, Brasilien, Argentinien und übriges Südamerika.
Nordamerika wird voraussichtlich den Markt dominieren und im Prognosezeitraum aufgrund des gut entwickelten Gesundheitssystems und der steigenden Nachfrage nach der Verwaltung großer Patientendaten die höchste durchschnittliche jährliche Wachstumsrate (CAGR) verzeichnen.
Der Länderabschnitt des Berichts enthält auch Angaben zu einzelnen marktbeeinflussenden Faktoren und Änderungen der Regulierung auf dem Inlandsmarkt, die sich auf die aktuellen und zukünftigen Trends des Marktes auswirken. Datenpunkte wie Downstream- und Upstream-Wertschöpfungskettenanalysen, technische Trends und Porters Fünf-Kräfte-Analyse sowie Fallstudien sind einige der Anhaltspunkte, die zur Prognose des Marktszenarios für einzelne Länder verwendet werden. Bei der Bereitstellung von Prognoseanalysen der Länderdaten werden auch die Präsenz und Verfügbarkeit globaler Marken und ihre Herausforderungen aufgrund großer oder geringer Konkurrenz durch lokale und inländische Marken sowie die Auswirkungen inländischer Zölle und Handelsrouten berücksichtigt.
Wettbewerbsumfeld und KI im Patientenmanagement Marktanteilsanalyse
Die Wettbewerbslandschaft des Marktes für KI im Patientenmanagement liefert Details nach Wettbewerbern. Die enthaltenen Details sind Unternehmensübersicht, Unternehmensfinanzen, erzielter Umsatz, Marktpotenzial, Investitionen in Forschung und Entwicklung, neue Marktinitiativen, globale Präsenz, Produktionsstandorte und -anlagen, Produktionskapazitäten, Stärken und Schwächen des Unternehmens, Produkteinführung, Produktbreite und -umfang, Anwendungsdominanz. Die oben angegebenen Datenpunkte beziehen sich nur auf den Fokus der Unternehmen in Bezug auf den Markt für KI im Patientenmanagement.
Zu den wichtigsten Akteuren auf dem Markt für KI im Patientenmanagement zählen:
- Welltok Inc (USA)
- Intel Corporation (USA)
- NVIDIA Corporation (USA)
- Google LLC (USA)
- International Business Machines Corporation (IBM) (USA)
- Microsoft Corporation (US)
- Geneva Vision, Inc. (USA)
- Enlitic, Inc. (USA)
- Next IT Corporation (USA)
- iCarbonX (China)
- Octopus Health (USA)
- Sweetech Health Ltd (Großbritannien)
- Superwise.ai (USA)
SKU-
Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud
- Interaktives Datenanalyse-Dashboard
- Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
- Zugriff für Research-Analysten für Anpassungen und Abfragen
- Konkurrenzanalyse mit interaktivem Dashboard
- Aktuelle Nachrichten, Updates und Trendanalyse
- Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Forschungsmethodik
Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.
Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.
Anpassung möglich
Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.