Analysebericht zu Marktgröße, Marktanteil und Trends im Bereich der Transaktionsüberwachung zur Betrugserkennung im asiatisch-pazifischen Raum – Branchenüberblick und Prognose bis 2031

Inhaltsverzeichnis anfordernInhaltsverzeichnis anfordern Mit Analyst sprechen Mit Analyst sprechen Jetzt kaufenJetzt kaufen Vor dem Kauf anfragen Vorher anfragen Kostenloser Beispielbericht Kostenloser Beispielbericht

Analysebericht zu Marktgröße, Marktanteil und Trends im Bereich der Transaktionsüberwachung zur Betrugserkennung im asiatisch-pazifischen Raum – Branchenüberblick und Prognose bis 2031

  • ICT
  • Publish Reports
  • Sep 2024
  • Asia-Pacific
  • 350 Seiten
  • Anzahl der Tabellen: 303
  • Anzahl der Abbildungen: 29

Asia Pacific Fraud Detection Transaction Monitoring Market

Marktgröße in Milliarden USD

CAGR :  % Diagram

Diagramm Prognosezeitraum
2024 –2031
Diagramm Marktgröße (Basisjahr)
USD 3.44 Billion
Diagramm Marktgröße (Prognosejahr)
USD 15.80 Billion
Diagramm CAGR
%
Diagramm Wichtige Marktteilnehmer
  • Dummy1
  • Dummy2
  • Dummy3
  • Dummy4
  • Dummy5

>Marktsegmentierung für die Betrugserkennung und Transaktionsüberwachung im asiatisch -pazifischen Raum nach Angebot (Lösungen und Services), Funktion (KYC/Kunden-Onboarding, Fallmanagement, Watchlist-Screening, Dashboard und Reporting und andere), Bereitstellung (vor Ort und in der Cloud), Organisationsgröße (große Organisationen und kleine und mittlere Organisationen), Anwendung (Zahlungsbetrugserkennung, Geldwäscheerkennung , Schutz vor Kontoübernahme, Verhinderung von Identitätsdiebstahl und andere), Branche (Banken, Finanzdienstleistungen und Versicherungen (BFSI), Einzelhandel , IT und Telekommunikation, Regierung und Verteidigung, Gesundheitswesen, Fertigung, Energie und Versorgungsunternehmen und andere) – Branchentrends und Prognose bis 2031.

Markt für Betrugserkennung und Transaktionsüberwachung

Betrugserkennung, Transaktionsüberwachung, Marktanalyse

Der Markt für die Überwachung von Transaktionen zur Betrugserkennung im asiatisch-pazifischen Raum verzeichnet aufgrund zunehmender Finanztransaktionen und ausgefeilter Cyberbedrohungen ein robustes Wachstum. Fortschrittliche Technologien wie KI und maschinelles Lernen werden integriert, um die Genauigkeit der Betrugserkennung zu verbessern und Fehlalarme zu reduzieren. Der regulatorische Druck und die Notwendigkeit der Einhaltung von Vorschriften treiben die Einführung in allen Branchen voran. Zu den wichtigsten Marktteilnehmern zählen Unternehmen, die auf Cybersicherheit und Datenanalyse spezialisiert sind. Es wird erwartet, dass der Markt weiter wächst, da Unternehmen versuchen, sich vor sich entwickelnden Betrugstaktiken zu schützen.

Betrugserkennung und Transaktionsüberwachung Marktgröße

Der Markt für Betrugserkennungstransaktionen im asiatisch-pazifischen Raum wird voraussichtlich einen Wert von 15,80 Milliarden US-Dollar bis 2031 erreichen (von 3,44 Milliarden im Jahr 2023) und im Prognosezeitraum 2024 bis 2031 eine durchschnittliche jährliche Wachstumsrate von 21,1 % aufweisen. Zusätzlich zu den Markteinblicken wie Marktwert, Wachstumsrate, Marktsegmenten, geografischer Abdeckung, Marktteilnehmern und Marktszenario enthält der vom Data Bridge Market Research-Team zusammengestellte Marktbericht eine eingehende Expertenanalyse, Import-/Exportanalyse, Preisanalyse, Produktionsverbrauchsanalyse und PESTLE-Analyse.

Betrugserkennung Transaktionsüberwachung Markttrends

„Integration von Big Data“

Die Integration von Big Data in die Betrugserkennung ermöglicht es Unternehmen, umfangreiche Datensätze aus verschiedenen Quellen zu analysieren und so Muster zu erkennen, die auf betrügerische Aktivitäten hindeuten. Durch den Einsatz von Big Data-Analysen können Unternehmen verborgene Erkenntnisse gewinnen, die mit herkömmlichen Methoden möglicherweise nicht erkannt werden. Predictive Analytics verbessert diese Fähigkeit, indem es historische Daten nutzt, um potenzielles betrügerisches Verhalten vorherzusehen, bevor es auftritt. Dieser Trend verbessert nicht nur die Erkennungsraten, sondern ermöglicht es Unternehmen auch, vorbeugende Maßnahmen zu ergreifen. Letztendlich verändert die Nutzung von Big Data die Art und Weise, wie Unternehmen an die Betrugsprävention herangehen, und macht sie effektiver und reaktionsschneller.

Berichtsumfang und Marktsegmentierung für die Überwachung von Betrugstransaktionen

Berichtsmetrik

Betrugserkennung Transaktionsüberwachung Wichtige Markteinblicke

Abgedeckte Segmente

  • Nach Angebot : Lösungen und Dienstleistungen
  • Nach Funktion : KYC/Kunden-Onboarding, Fallmanagement, Watchlist-Screening, Dashboard & Reporting und andere
  • Nach Bereitstellung : Vor Ort und in der Cloud
  • Nach Organisationsgröße : Große Organisationen und kleine und mittelgroße Organisationen
  • Nach Anwendung : Erkennung von Zahlungsbetrug, Erkennung von Geldwäsche, Schutz vor Kontoübernahme, Verhinderung von Identitätsdiebstahl und andere
  • Nach Branchen : Banken, Finanzdienstleistungen und Versicherungen (BFSI), Einzelhandel, IT und Telekommunikation, Regierung und Verteidigung, Gesundheitswesen, Fertigung, Energie und Versorgung und andere

Abgedeckte Länder

China, Japan, Indien, Südkorea, Australien, Neuseeland, Indonesien, Thailand, Malaysia, Singapur, Philippinen, Taiwan, Vietnam und Rest des asiatisch-pazifischen Raums

Wichtige Marktteilnehmer

Amazon Web Services, Inc. (USA), LexisNexis (Tochtergesellschaft von Reed Elsevier) (USA), Mastercard (USA), TATA Consultancy Services Limited (Indien), Fiserv, Inc. (USA), SAS Institute Inc. (USA), ACI Worldwide (USA), Oracle (USA), NICE (Israel), FICO (USA), SymphonyAI (USA), UBIQUITY (USA), Verafin Solutions ULC (Tochtergesellschaft von Nasdaq Inc.) (Kanada), GB Group plc („GBG“) (Großbritannien), Quantexa (Großbritannien), Sum and Substance Ltd (Großbritannien), Hawk (Deutschland), Featurespace Limited (England), INETCO Systems Ltd. (Kanada), Seon Technologies Ltd. (Ungarn) und Feedzai (Portugal) unter anderem

Marktchancen

  • Nutzung von KI- und maschinellen Lernalgorithmen zur Verbesserung der Genauigkeit
  • Zusammenarbeit mit Fintech-Unternehmen und Technologieanbietern

Mehrwertdaten

Zusätzlich zu den Markteinblicken wie Marktwert, Wachstumsrate, Marktsegmenten, geografischer Abdeckung, Marktteilnehmern und Marktszenario enthält der vom Data Bridge Market Research-Team zusammengestellte Marktbericht eine eingehende Expertenanalyse, Import-/Exportanalyse, Preisanalyse, Produktionsverbrauchsanalyse und PESTLE-Analyse.

Betrugserkennung und Transaktionsüberwachung – Marktdefinition

Betrugserkennung und Transaktionsüberwachung beziehen sich auf die Systeme und Prozesse, die von Finanzinstituten und Unternehmen verwendet werden, um betrügerische Aktivitäten bei Transaktionen zu identifizieren und zu verhindern. Diese Systeme analysieren kontinuierlich Transaktionsdaten, um ungewöhnliche Muster oder Verhaltensweisen zu erkennen, die auf Betrug hinweisen können, wie z. B. unbefugten Zugriff, Geldwäsche oder Identitätsdiebstahl. Der Markt für Lösungen zur Betrugserkennung und Transaktionsüberwachung wird durch das zunehmende Volumen an Online-Transaktionen, die Komplexität der Betrugstaktiken und strenge gesetzliche Anforderungen zur Reduzierung von Finanzkriminalität angetrieben. Unternehmen setzen fortschrittliche Technologien wie KI, maschinelles Lernen und Echtzeitanalysen ein, um die Genauigkeit und Effizienz bei der Identifizierung betrügerischer Aktivitäten zu verbessern, die Einhaltung von Vorschriften sicherzustellen und Vermögenswerte zu schützen.

Betrugserkennung Transaktionsüberwachung Marktdynamik

Treiber

  • Steigender Bedarf an robusten Erkennungssystemen, die sich an neue Bedrohungen anpassen können

Da sich Finanzbetrugssysteme ständig weiterentwickeln und immer raffinierter werden, steigt der Bedarf an robusten Betrugserkennungssystemen, die sich effektiv an neue Bedrohungen anpassen können. Herkömmliche Betrugserkennungsmethoden haben oft Schwierigkeiten, mit den raschen Änderungen der Betrugstaktiken Schritt zu halten, sodass Finanzinstitute und Unternehmen fortschrittliche Erkennungssysteme implementieren müssen. Diese Systeme müssen Spitzentechnologien wie künstliche Intelligenz und maschinelles Lernen nutzen, um große Mengen an Transaktionsdaten in Echtzeit zu analysieren und Muster und Anomalien zu identifizieren, die auf betrügerische Aktivitäten hinweisen können.

Für Instanzen,

Im Februar 2024 wurde laut einem Blog der Bill & Melinda Gates Foundation Tazama, eine neue Open-Source-Betrugserkennungssoftware, auf den Markt gebracht, die dabei helfen soll, Finanztransaktionen auf Betrug und Geldwäsche zu überwachen. Diese Software soll die finanzielle Inklusion unterstützen, indem sie eine kostengünstige Lösung für Länder mit niedrigem und mittlerem Einkommen bietet, die oft mit teuren kommerziellen Betrugsschutzsystemen zu kämpfen haben. Tazama ermöglicht es Zentralbanken und Finanzinstituten, ihre Kunden besser zu schützen und die Transaktionsintegrität sicherzustellen. Der Open-Source-Charakter der Software ermöglicht eine globale Zusammenarbeit zur Verbesserung ihrer Fähigkeiten und trägt dem steigenden Bedarf an robusten Erkennungssystemen Rechnung, die sich an sich entwickelnde Bedrohungen anpassen.

  • Verstärkter Fokus auf Identitätsprüfung und Authentifizierung

Die verstärkte Betonung von Identitätsüberprüfung und -authentifizierung verändert die Landschaft der Betrugserkennung und Transaktionsüberwachung. Durch die Integration fortschrittlicher Technologien wie biometrische Authentifizierung, Multi-Faktor-Überprüfung und KI-gesteuerte Identitätsanalyse können Finanzinstitute Benutzeridentitäten genauer überprüfen und betrügerische Aktivitäten erkennen. Dieser robuste Ansatz trägt dazu bei, Risiken im Zusammenhang mit unbefugtem Zugriff und betrügerischen Transaktionen zu mindern und die allgemeine Sicherheit und Zuverlässigkeit von Finanzsystemen zu verbessern. Mit der Weiterentwicklung von Identitätsüberprüfungstechnologien werden diese eine entscheidende Rolle bei der Stärkung von Betrugserkennungsmechanismen und der Gewährleistung der Integrität von Transaktionsüberwachungsprozessen spielen.

Zum Beispiel,

Im November 2023 führte Westpac NZ eine fortschrittliche Biometrie-Software des israelischen Cybersicherheitsunternehmens BioCatch ein, um seine Betrugserkennungssysteme zu verbessern. Die Technologie analysierte das Online-Verhalten der Kunden, wie etwa Tippgeschwindigkeit und Touchscreen-Druck, um ungewöhnliche Aktivitäten zu erkennen und Betrug zu verhindern. Westpac begann im September mit der Implementierung von BioCatch und plant, bis Ende des Monats voll einsatzbereit zu sein. Die Bank gab an, im vergangenen Jahr Betrug in zweistelliger Millionenhöhe verhindert zu haben, und betonte, dass sie angesichts immer raffinierterer Betrügereien verstärkt auf Identitätsüberprüfung und Authentifizierung setzt.

Gelegenheiten

  • Nutzung von KI- und maschinellen Lernalgorithmen zur Verbesserung der Genauigkeit

Der Einsatz von KI- und maschinellen Lernalgorithmen verbessert die Genauigkeit der Betrugserkennung und der Transaktionsüberwachung erheblich. Diese Technologien ermöglichen es Systemen, große Datenmengen in Echtzeit zu analysieren und komplexe Muster und Anomalien zu erkennen, die herkömmlichen Methoden möglicherweise entgehen. Indem sie kontinuierlich aus neuen Daten lernen, passen KI-Algorithmen ihre Erkennungsfähigkeiten an und verfeinern sie, wodurch Fehlalarme reduziert und die Präzision von Betrugswarnungen verbessert wird.

Darüber hinaus verbessern KI und maschinelles Lernen die Fähigkeit, neue Betrugstrends und ausgeklügelte Machenschaften zu erkennen. Diese dynamische Anpassungsfähigkeit stellt sicher, dass Überwachungssysteme den sich entwickelnden Bedrohungen immer einen Schritt voraus sind und einen zuverlässigeren und wirksameren Schutz vor Finanzkriminalität bieten. Dadurch können Finanzinstitute ein höheres Maß an Sicherheit und Betriebseffizienz erreichen und von fortschrittlichen, automatisierten Lösungen profitieren, die sich ihren Anforderungen anpassen.

Zum Beispiel,

Im Juni 2023 brachte Oscilar seine KI-gestützte ACH-Betrugserkennungslösung auf den Markt, die die Genauigkeit der Betrugsprävention im schnell wachsenden ACH-Netzwerk verbessern soll. Die Lösung nutzt fortschrittliche Algorithmen für maschinelles Lernen und generative KI, um betrügerische Transaktionen mit hoher Präzision zu identifizieren und zu verhindern. Dies ist besonders wichtig, da der ACH-Kreditbetrug von 2021 bis 2023 um 6 % zugenommen hat, was die Notwendigkeit einer effektiveren Betrugserkennung unterstreicht. Die Technologie von Oscilar behebt die Einschränkungen traditioneller Methoden, die oft Schwierigkeiten haben, mit den sich entwickelnden Betrugstaktiken Schritt zu halten, und bietet eine robustere und zeitnahe Abwehr gegen ausgeklügelte betrügerische Aktivitäten.

  • Zusammenarbeit mit Fintech-Unternehmen und Technologieanbietern

Durch die Zusammenarbeit mit Fintech-Unternehmen und Technologieanbietern können Finanzinstitute fortschrittliche Technologien und innovative Lösungen zur verbesserten Betrugserkennung nutzen. Diese Partnerschaften ermöglichen die Integration modernster Tools und Fachkenntnisse und erleichtern die Entwicklung ausgefeilterer Betrugserkennungssysteme. Durch die Zusammenarbeit können Banken und Fintech-Unternehmen die neuesten Fortschritte in den Bereichen KI, maschinelles Lernen und Datenanalyse nutzen, um die Genauigkeit zu verbessern, Fehlalarme zu reduzieren und besser vor betrügerischen Aktivitäten zu schützen.

Zum Beispiel,

Im Dezember 2023 ging Treasury Prime eine Partnerschaft mit Effectiv ein, um die Betrugserkennung für Banken und Fintechs zu verbessern. Durch die Zusammenarbeit kann das Netzwerk von Treasury Prime die fortschrittliche Transaktionsüberwachungslösung von Effectiv nutzen, die KI nutzt, um betrügerische Transaktionen in Echtzeit zu identifizieren und einzudämmen. Diese Partnerschaft hilft Finanzinstituten, finanzielle Verluste und Reputationsschäden durch die Integration ausgefeilter Betrugspräventionstools zu reduzieren. Der Schritt unterstreicht die Bedeutung der Zusammenarbeit mit Fintech-Unternehmen und Technologieanbietern, um die Betrugserkennung und das Risikomanagement in einer sich schnell entwickelnden Finanzlandschaft zu stärken.

Einschränkung/Herausforderung

  • Hohes Transaktionsvolumen erhöht die Erkennungskomplexität

Die Verwaltung eines hohen Transaktionsvolumens stellt bei der Betrugserkennung eine große Herausforderung dar. Mit der steigenden Anzahl von Transaktionen wird es immer schwieriger, betrügerische Aktivitäten von legitimen Aktivitäten zu unterscheiden. Traditionelle Methoden können damit kaum Schritt halten, übersehen oft subtile Muster oder erzeugen falsche Positivergebnisse, was zu Ineffizienzen und erhöhten Risiken führt.

Darüber hinaus erfordert die enorme Datenmenge robuste Systeme, die Informationen in Echtzeit verarbeiten und analysieren können. Ohne fortschrittliche Technologie fällt es Finanzinstituten möglicherweise schwer, Transaktionen effektiv zu überwachen, was sie anfällig für ausgeklügelte Betrugsmaschen macht, die durch die Maschen schlüpfen können.

Zum Beispiel

Laut einem im Juni 2024 von der NVIDIA Corporation veröffentlichten Artikel beschleunigte American Express die Betrugserkennung mithilfe von KI-gestützten Long Short-Term Memory (LSTM)-Modellen. Durch die Nutzung paralleler Berechnungen auf GPUs konnte das Unternehmen große Mengen an Transaktionsdaten schnell verarbeiten und analysieren und so Betrugserkennung in Echtzeit ermöglichen. Dieser Ansatz half American Express, die Komplexität zu bewältigen, die sich aus ihrem hohen Transaktionsvolumen ergab. Die Integration von beschleunigter Berechnung und KI verbesserte ihre Fähigkeit, Anomalien schnell zu erkennen, die Betriebseffizienz zu verbessern und potenzielle Verluste durch Betrug zu reduzieren.

  • Hohe Anfangsinvestition und laufende Wartungskosten

Hohe Anfangsinvestitionen und laufende Wartungskosten stellen erhebliche Hindernisse für die Implementierung moderner Betrugserkennungssysteme dar. Diese finanziellen Belastungen können kleinere Institutionen davon abhalten, Spitzentechnologien einzuführen, was sie potenziell anfällig für Betrug macht. Die erheblichen Kosten, die sowohl mit der Einrichtung als auch mit der laufenden Wartung solcher Systeme verbunden sind, können das Budget belasten und den Entscheidungsprozess für Institutionen erschweren, die erweiterte Lösungen zur Transaktionsüberwachung in Betracht ziehen.

Für Instanzen,

Mehrere Unternehmen weisen erhebliche Anfangsinvestitionen und laufende Wartungskosten auf. GLAnalytics verlangt eine jährliche Gebühr von 8.000 USD, während CertifID bei 150 USD pro Monat plus 10 USD pro Transaktion beginnt. Die Module von credolab kosten zwischen 600 und 1.000 USD pro Monat. Diese hohen Kosten können Unternehmen davon abhalten, diese Dienste einzuführen oder aufrechtzuerhalten.

Dieser Marktbericht enthält Einzelheiten zu neuen Entwicklungen, Handelsvorschriften, Import-Export-Analysen, Produktionsanalysen, Wertschöpfungskettenoptimierungen, Marktanteilen, Auswirkungen inländischer und lokaler Marktteilnehmer, analysiert Chancen in Bezug auf neue Einnahmequellen, Änderungen der Marktvorschriften, strategische Marktwachstumsanalysen, Marktgröße, Kategoriemarktwachstum, Anwendungsnischen und -dominanz, Produktzulassungen, Produkteinführungen, geografische Expansionen und technologische Innovationen auf dem Markt. Um weitere Informationen zum Markt zu erhalten, wenden Sie sich an Data Bridge Market Research, um einen Analystenbericht zu erhalten. Unser Team hilft Ihnen dabei, eine fundierte Marktentscheidung zu treffen, um Marktwachstum zu erzielen.

Marktumfang für die Überwachung von Betrugserkennungstransaktionen

Der Markt für die Überwachung von Transaktionen zur Betrugserkennung im asiatisch-pazifischen Raum ist in sechs wichtige Segmente unterteilt, basierend auf Angebot, Funktion, Bereitstellungsmodus, Unternehmensgröße, Anwendung und Branche. Das Wachstum dieser Segmente hilft Ihnen bei der Analyse von dürftigen Wachstumssegmenten in den Branchen und bietet den Benutzern einen wertvollen Marktüberblick und Markteinblicke, die ihnen dabei helfen, strategische Entscheidungen zur Identifizierung der wichtigsten Marktanwendungen zu treffen.

Angebot

  • Lösung
  • Dienstleistungen
    • Professioneller Service
      • Support und Wartung
      • Integrationsdienste
      • Beratungsleistungen
      • Fortbildungen & Events
    • Verwalteter Dienst

Funktion

  • KYC/Kunden-Onboarding
  • Fallmanagement
  • Watchlist-Screening
  • Dashboard und Berichte
  • Sonstiges

Bereitstellungsmodus

  • Vor Ort
  • Wolke

Größe der Organisation

  • Kleine und mittelgroße Organisationen
    • Wolke
    • Vor Ort
  • Große Organisationen
    • Wolke
    • Vor Ort

Anwendung

  • Erkennung von Zahlungsbetrug
  • Geldwäscheerkennung
  • Schutz vor Kontoübernahme
  • Schutz vor Identitätsdiebstahl
  • Sonstiges

Vertikal

  • Banken, Finanzdienstleistungen und Versicherungen (BFSI)
    • Lösung
    • Dienstleistungen
  • Einzelhandel
    • Lösung
    • Dienstleistungen
  • IT und Telekommunikation
    • Lösung
    • Dienstleistungen
  • Regierung und Verteidigung
    • Lösung
    • Dienstleistungen
  •  Gesundheitspflege
    • Lösung
    • Dienstleistungen
  • Herstellung
    • Lösung
    • Dienstleistungen
  • Energie und Versorgung
    • Lösung
    • Dienstleistungen
  • Sonstiges
    • Lösung
    • Dienstleistungen

Regionale Analyse des Marktes für die Überwachung von Betrugstransaktionen

Der Markt wird analysiert und Einblicke in die Marktgröße und Trends werden nach Angebot, Funktion, Bereitstellungsmodus, Organisationsgröße, Anwendung und Vertikale bereitgestellt, wie oben angegeben.

Die vom Markt abgedeckten Länder sind China, Japan, Indien, Südkorea, Australien, Neuseeland, Indonesien, Thailand, Malaysia, Singapur, Philippinen, Taiwan, Vietnam und der Rest des asiatisch-pazifischen Raums.

China dominiert den Markt für die Betrugserkennung und Transaktionsüberwachung im asiatisch-pazifischen Raum aufgrund des steigenden Bedarfs an robusten Erkennungssystemen, die sich an neue Bedrohungen anpassen können.

Der Länderabschnitt des Berichts enthält auch Angaben zu einzelnen marktbeeinflussenden Faktoren und Änderungen der Regulierung auf dem Inlandsmarkt, die sich auf die aktuellen und zukünftigen Markttrends auswirken. Datenpunkte wie Neuverkäufe, Ersatzverkäufe, demografische Daten des Landes, Regulierungsgesetze und Import-/Exportzölle sind einige der wichtigsten Anhaltspunkte, die zur Prognose des Marktszenarios für einzelne Länder verwendet werden. Bei der Prognoseanalyse der Länderdaten werden auch die Präsenz und Verfügbarkeit von Marken aus dem asiatisch-pazifischen Raum und ihre Herausforderungen aufgrund großer oder geringer Konkurrenz durch lokale und inländische Marken sowie die Auswirkungen der Vertriebskanäle berücksichtigt.

Marktanteil bei der Betrugserkennung und Transaktionsüberwachung

Die Wettbewerbslandschaft des Marktes für Betrugserkennung und Transaktionsüberwachung im asiatisch-pazifischen Raum liefert Einzelheiten zu den Wettbewerbern. Zu den enthaltenen Einzelheiten gehören Unternehmensübersicht, Unternehmensfinanzen, erzielter Umsatz, Marktpotenzial, Investitionen in Forschung und Entwicklung, neue Marktinitiativen, Produktionsstandorte und -anlagen, Stärken und Schwächen des Unternehmens, Produkteinführung, Produktzulassungen, Produktbreite und -umfang, Anwendungsdominanz und Produkttyp-Lebenslinienkurve. Die oben angegebenen Datenpunkte beziehen sich nur auf den Fokus des Unternehmens auf den Markt.

Die Marktführer im Bereich der Betrugserkennung und Transaktionsüberwachung sind:

  • Amazon Web Services, Inc. (USA)
  • LexisNexis (Tochtergesellschaft von Reed Elsevier) (USA)
  • Mastercard (USA)
  • TATA Consultancy Services Limited (Indien)
  • Fiserv, Inc. (USA)
  • SAS Institute Inc. (USA)
  • ACI Worldwide (USA)
  • Oracle (USA)
  • NIZZA (Israel)
  • FICO (USA)
  • SymphonyAI (USA)
  • UBIQUITY (USA)
  • Verafin Solutions ULC (Tochtergesellschaft von Nasdaq Inc.) (Kanada)
  • GB Group plc („GBG“) (Großbritannien)
  • Quantexa (Großbritannien)
  • Sum and Substance Ltd (Großbritannien)
  • Hawk (Deutschland)
  • Featurespace Limited (England)
  • INETCO Systems Ltd. (Kanada)
  • Seon Technologies Ltd. (Ungarn)
  • Feedzai (Portugal)

Neueste Entwicklungen auf dem Markt für Betrugserkennungs- und Transaktionsüberwachung

  • Laut einem im Juni 2024 von der NVIDIA Corporation veröffentlichten Artikel beschleunigte American Express die Betrugserkennung mithilfe von KI-gestützten Long Short-Term Memory (LSTM)-Modellen. Durch die Nutzung paralleler Berechnungen auf GPUs konnte das Unternehmen große Mengen an Transaktionsdaten schnell verarbeiten und analysieren und so Betrugserkennung in Echtzeit ermöglichen. Dieser Ansatz half American Express, die Komplexität zu bewältigen, die sich aus ihrem hohen Transaktionsvolumen ergab. Die Integration von beschleunigter Berechnung und KI verbesserte ihre Fähigkeit, Anomalien schnell zu erkennen, die Betriebseffizienz zu verbessern und potenzielle Verluste durch Betrug zu reduzieren
  • Laut dem von BluEnt veröffentlichten Blog standen Unternehmen im Juli 2023 aufgrund des hohen Transaktionsvolumens vor größeren Herausforderungen bei der Betrugserkennung. Es wurden fortschrittliche Technologien und automatisierte Systeme eingesetzt, um große Datensätze zu analysieren und risikoreiche Trends und Anomalien zu erkennen. Trotz der Schwierigkeiten bei der Verwaltung unstrukturierter Daten, in denen der meiste Betrug auftritt, ermöglichte die Datenanalyse zur Finanzkriminalität die effektive Überprüfung sowohl strukturierter als auch unstrukturierter Daten. Dieser Ansatz trug dazu bei, betrügerische Aktivitäten zu verhindern und verschiedene Datenquellen für eine verbesserte Erkennung zu integrieren
  • Im Juni 2024 führten ACI Worldwide und RS2 in Brasilien eine umfassende Zahlungslösung ein, die ihre Acquiring- und Issuing-Technologien kombinierte. Diese Cloud-basierte Plattform ermöglichte es Finanzinstituten und Zahlungsdienstleistern, neue Produkte und Dienstleistungen effizient einzuführen, die Sicherheit zu verbessern und die Kosten zu senken. Die Integration von fortschrittlichem Betrugsmanagement und Echtzeitanalysen kam den Unternehmen zugute, indem sie ihre Marktreichweite vergrößerten und ihre Umsatzchancen steigerten.
  • Im Oktober 2023 ging ACI Worldwide eine Partnerschaft mit Nymcard ein, um seine Fähigkeiten zur Betrugs- und Geldwäschebekämpfung zu verbessern. Diese Partnerschaft ermöglichte es Nymcard, Finanzbetrug mithilfe fortschrittlicher maschineller Lern- und Analysemethoden schnell und effizient zu erkennen und zu verhindern. Die Bereitstellung über die öffentliche Cloud von ACI verbesserte Skalierbarkeit, Sicherheit und Betriebseffizienz und stärkte die Marktposition von Nymcard in MENA erheblich
  • Im Juni 2024 erweiterte DataVisor, Inc. seine Multi-Tenancy-Fähigkeiten, um skalierbare, sichere und flexible Lösungen zur Betrugsprävention und Geldwäschebekämpfung bereitzustellen. Das Upgrade ermöglichte es Unternehmen, Betrugs- und Geldwäschebekämpfungsstrategien anzupassen und sie mit Funktionen wie maschinellen Lernmodellen und Geschäftsregeln auf Untermandanten auszuweiten. Diese Verbesserungen unterstützten Sponsorbanken bei der Einhaltung von Vorschriften und ermöglichten es großen Finanzinstituten, Daten zu zentralisieren und gleichzeitig Entscheidungen für Untermandanten zu treffen. Diese Entwicklung kam DataVisor zugute, indem sie seine Marktposition stärkte und die Akzeptanz seiner Lösungen bei Banken und Finanzinstituten erhöhte, was die Kundenzufriedenheit und -bindung steigerte.


SKU-

Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud

  • Interaktives Datenanalyse-Dashboard
  • Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
  • Zugriff für Research-Analysten für Anpassungen und Abfragen
  • Konkurrenzanalyse mit interaktivem Dashboard
  • Aktuelle Nachrichten, Updates und Trendanalyse
  • Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Demo anfordern

Inhaltsverzeichnis

1 INTRODUCTION

1.1 OBJECTIVES OF THE STUDY

1.2 MARKET DEFINITION

1.3 OVERVIEW OF ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET

1.4 CURRENCY AND PRICING

1.5 LIMITATIONS

1.6 MARKETS COVERED

2 MARKET SEGMENTATION

2.1 MARKETS COVERED

2.2 GEOGRAPHICAL SCOPE

2.3 YEARS CONSIDERED FOR THE STUDY

2.4 DBMR TRIPOD DATA VALIDATION MODEL

2.5 PRIMARY INTERVIEWS WITH KEY OPINION LEADERS

2.6 DBMR MARKET POSITION GRID

2.7 VENDOR SHARE ANALYSIS

2.8 MULTIVARIATE MODELING

2.9 OFFERING TIMELINE CURVE

2.1 MARKET APPLICATION COVERAGE GRID

2.11 SECONDARY SOURCES

2.12 ASSUMPTIONS

3 EXECUTIVE SUMMARY

4 PREMIUM INSIGHTS

4.1 PORTER’S FIVE FORCES

4.2 REGULATORY STANDARDS

4.3 TECHNOLOGICAL TRENDS

4.4 CASE STUDY

4.5 PRICING ANALYSIS

4.6 VALUE CHAIN FOR ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET

5 MARKET OVERVIEW

5.1 DRIVERS

5.1.1 RISING NEED FOR ROBUST DETECTION SYSTEMS THAT CAN ADAPT TO NEW THREATS

5.1.2 INCREASED FOCUS ON IDENTITY VERIFICATION AND AUTHENTICATION

5.1.3 GROWING AWARENESS AMONG CONSUMERS ABOUT FRAUD RISKS

5.1.4 INCREASING DEMAND FOR REAL-TIME TRANSACTION MONITORING ACROSS BFSI SECTOR

5.2 RESTRAINTS

5.2.1 HIGH INITIAL INVESTMENT AND ONGOING MAINTENANCE COSTS

5.2.2 ENSURING COMPLIANCE WITH CUSTOMER DATA PRIVACY

5.3 OPPORTUNITIES

5.3.1 UTILIZING AI AND MACHINE LEARNING ALGORITHMS TO ENHANCE ACCURACY

5.3.2 COLLABORATING WITH FINTECH COMPANIES AND TECHNOLOGY PROVIDERS

5.3.3 STREAMLINING FRAUD DETECTION THROUGH AUTOMATION CAN MINIMIZE LABOR COSTS

5.4 CHALLENGES

5.4.1 HIGH VOLUME OF TRANSACTIONS INCREASES DETECTION COMPLEXITY

5.4.2 DIFFICULTY IN ENSURING REGULATORY ALIGNMENT GLOBALLY

6 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING

6.1 OVERVIEW

6.2 SOLUTION

6.3 SERVICES

6.3.1 PROFESSIONAL SERVICES

6.3.1.1 SUPPORT & MAINTENANCE

6.3.1.2 INTEGRATION SERVICES

6.3.1.3 CONSULTING SERVICES

6.3.1.4 TRAINING & EDUCATION

7 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET, BY FUNCTION

7.1 OVERVIEW

7.2 KYC/CUSTOMER ONBOARDING

7.3 CASE MANAGEMENT

7.4 WATCH LIST SCREENING

7.5 DASHBOARD & REPORTING

7.6 OTHERS

8 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE

8.1 OVERVIEW

8.2 CLOUD

8.3 ON-PREMISE

9 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET, BY ORGANIZATION SIZE

9.1 OVERVIEW

9.2 LARGE SIZE ORGANIZATIONS

9.2.1 CLOUD

9.2.2 ON-PREMISE

9.3 SMALL AND MEDIUM SIZED ORGANIZATIONS

9.3.1 CLOUD

9.3.2 ON-PREMISE

10 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET, BY APPLICATION

10.1 OVERVIEW

10.2 PAYMENT FRAUD DETECTION

10.3 MONEY LAUNDERING DETECTION

10.4 ACCOUNT TAKEOVER PROTECTION

10.5 IDENTITY THEFT PREVENTION

10.6 OTHERS

11 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET, BY VERTICAL

11.1 OVERVIEW

11.2 BANKING, FINANCIAL SERVICES, AND INSURANCE (BFSI)

11.2.1 SOLUTION

11.2.2 SERVICES

11.3 RETAIL

11.3.1 SOLUTION

11.3.2 SERVICES

11.4 IT & TELECOMMUNICATION

11.4.1 SOLUTION

11.4.2 SERVICES

11.5 GOVERNMENT & DEFENSE

11.5.1 SOLUTION

11.5.2 SERVICES

11.6 HEALTHCARE

11.6.1 SOLUTION

11.6.2 SERVICES

11.7 MANUFACTURING

11.7.1 SOLUTION

11.7.2 SERVICES

11.8 ENERGY & UTILITIES

11.8.1 SOLUTION

11.8.2 SERVICES

11.9 OTHERS

11.9.1 SOLUTION

11.9.2 SERVICES

12 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET, BY REGION

12.1 ASIA-PACIFIC

12.1.1 CHINA

12.1.2 JAPAN

12.1.3 INDIA

12.1.4 SOUTH KOREA

12.1.5 AUSTRALIA

12.1.6 NEW ZEALAND

12.1.7 INDONESIA

12.1.8 THAILAND

12.1.9 MALAYSIA

12.1.10 SINGAPORE

12.1.11 PHILIPPINES

12.1.12 TAIWAN

12.1.13 VIETNAM

12.1.14 REST OF ASIA PACIFIC

13 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET, COMPANY LANDSCAPE

13.1 COMPANY SHARE ANALYSIS: ASIA-PACIFIC

14 SWOT ANALYSIS

15 COMPANY PROFILE

15.1 AMAZON WEB SERVICES, INC.

15.1.1 COMPANY SNAPSHOT

15.1.2 REVENUE ANALYSIS

15.1.3 COMPANY SHARE ANALYSIS

15.1.4 SERVICE PORTFOLIO

15.1.5 RECENT DEVELOPMENTS

15.2 LEXISNEXIS (SUBSIDIARY OF REED ELSEVIER)

15.2.1 COMPANY SNAPSHOT

15.2.2 COMPANY SHARE ANALYSIS

15.2.3 SOLUTION PORTFOLIO

15.2.4 RECENT DEVELOPMENTS

15.3 MASTERCARD

15.3.1 COMPANY SNAPSHOT

15.3.2 REVENUE ANALYSIS

15.3.3 COMPANY SHARE ANALYSIS

15.3.4 SOLUTION PORTFOLIO

15.3.5 RECENT DEVELOPMENTS

15.4 TATA CONSULTANCY SERVICES LIMITED

15.4.1 COMPANY SNAPSHOT

15.4.2 REVENUE ANALYSIS

15.4.3 COMPANY SHARE ANALYSIS

15.4.4 SOLUTION PORTFOLIO

15.4.5 RECENT DEVELOPMENTS

15.5 FISERV, INC.

15.5.1 COMPANY SNAPSHOT

15.5.2 REVENUE ANALYSIS

15.5.3 COMPANY SHARE ANALYSIS

15.5.4 SOLUTION PORTFOLIO

15.5.5 RECENT DEVELOPMENTS

15.6 ABRA INNOVATIONS, INC

15.6.1 COMPANY SNAPSHOT

15.6.2 PRODUCT PORTFOLIO

15.6.3 RECENT DEVELOPMENTS

15.7 ACI WORLDWIDE

15.7.1 COMPANY SNAPSHOT

15.7.2 REVENUE ANALYSIS

15.7.3 SOLUTION PORTFOLIO

15.7.4 RECENT DEVELOPMENTS

15.8 DATAVISOR, INC.

15.8.1 COMPANY SNAPSHOT

15.8.2 SOLUTION PORTFOLIO

15.8.3 RECENT DEVELOPMENTS

15.9 FEATURESPACE LIMITED

15.9.1 COMPANY SNAPSHOT

15.9.2 SOLUTION PORTFOLIO

15.9.3 RECENT DEVELOPMENTS

15.1 FEEDZAI

15.10.1 COMPANY SNAPSHOT

15.10.2 SOLUTION PORTFOLIO

15.10.3 RECENT DEVELOPMENTS

15.11 FICO

15.11.1 COMPANY SNAPSHOT

15.11.2 REVENUE ANALYSIS

15.11.3 SOLUTION PORTFOLIO

15.11.4 RECENT DEVELOPMENT

15.12 GB GROUP PLC (‘GBG’)

15.12.1 COMPANY SNAPSHOT

15.12.2 REVENUE ANALYSIS

15.12.3 PRODUCT PORTFOLIO

15.12.4 RECENT DEVELOPMENTS

15.13 HAWK

15.13.1 COMPANY SNAPSHOT

15.13.2 PRODUCT PORTFOLIO

15.13.3 RECENT DEVELOPMENTS

15.14 INETCO SYSTEMS LTD.

15.14.1 COMPANY SNAPSHOT

15.14.2 PRODUCT PORTFOLIO

15.14.3 RECENT DEVELOPMENTS

15.15 INFORM SOFTWARE

15.15.1 COMPANY SNAPSHOT

15.15.2 SOLUTION PORTFOLIO

15.15.3 RECENT DEVELOPMENTS

15.16 NICE

15.16.1 COMPANY SNAPSHOT

15.16.2 SOLUTION PORTFOLIO

15.16.3 RECENT DEVELOPMENTS

15.17 ORACLE

15.17.1 COMPANY SNAPSHOT

15.17.2 REVENUE ANALYSIS

15.17.3 SERVICE CATEGORY

15.17.4 RECENT DEVELOPMENTS

15.18 QUANTEXA

15.18.1 COMPANY SNAPSHOT

15.18.2 SOLUTION PORTFOLIO

15.18.3 RECENT DEVELOPMENTS

15.19 SANCTION SCANNER

15.19.1 COMPANY SNAPSHOT

15.19.2 PRODUCT PORTFOLIO

15.19.3 RECENT DEVELOPMENTS

15.2 SAS INSTITUTE INC

15.20.1 COMPANY SNAPSHOT

15.20.2 SOLUTION PORTFOLIO

15.20.3 RECENT DEVELOPMENT

15.21 SEON TECHNOLOGIES LTD.

15.21.1 COMPANY SNAPSHOT

15.21.2 PRODUCT PORTFOLIO

15.21.3 RECENT DEVELOPMENTS

15.22 SUM AND SUBSTANCE LTD (UK)

15.22.1 COMPANY SNAPSHOT

15.22.2 SOLUTION PORTFOLIO

15.22.3 RECENT DEVELOPMENTS

15.23 SYMPHONYAI

15.23.1 COMPANY SNAPSHOT

15.23.2 SOLUTION PORTFOLIO

15.23.3 RECENT DEVELOPMENTS

15.24 UBIQUITY

15.24.1 COMPANY SNAPSHOT

15.24.2 REVENUE ANALYSIS

15.24.3 SOLUTION PORTFOLIO

15.24.4 RECENT DEVELOPMENT

15.25 VERAFIN SOLUTIONS ULC (SUBSIDIARY OF NASDAQ INC.)

15.25.1 COMPANY SNAPSHOT

15.25.2 SOLUTION PORTFOLIO

15.25.3 RECENT DEVELOPMENTS

16 QUESTIONNAIRE

17 RELATED REPORTS

Tabellenverzeichnis

TABLE 1 KEY PLAYERS OF FIUS AROUND THE GLOBE

TABLE 2 PRICING ANALYSIS FOR ENTERPRISES

TABLE 3 PRICING ANALYSIS (MEMCYCO AND OTHER COMPANIES)

TABLE 4 PRICING ANALYSIS (SEON AND ONDATO)

TABLE 5 U.S. STATE WISE ONLINE BANKING FRAUD

TABLE 6 FRAUD DETECTION AND VERIFICATION PRICE OFFERED BY PER COMPANY

TABLE 7 CONSUMER DATA PROTECTION ACT WORLD WIDE

TABLE 8 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 9 ASIA-PACIFIC SOLUTION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 10 ASIA-PACIFIC SERVICES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 11 ASIA-PACIFIC SERVICES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 12 ASIA-PACIFIC PROFESSIONAL SERVICES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 13 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)

TABLE 14 ASIA-PACIFIC KYC/CUSTOMER ONBOARDING IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 15 ASIA-PACIFIC CASE MANAGEMENT IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 16 ASIA-PACIFIC WATCH LIST SCREENING IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 17 ASIA-PACIFIC DASHBOARD & REPORTING IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 18 ASIA-PACIFIC OTHERS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 19 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 20 ASIA-PACIFIC CLOUD IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 21 ASIA-PACIFIC ON-PREMISE IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 22 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET, BY ORGANIZATION SIZE, 2022-2031 (USD THOUSAND)

TABLE 23 ASIA-PACIFIC LARGE SIZE ORGANIZATIONS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 24 ASIA-PACIFIC LARGE SIZE ORGANIZATIONS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 25 ASIA-PACIFIC SMALL & MEDIUM SIZED ORGANIZATION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 26 ASIA-PACIFIC SMALL & MEDIUM SIZED ORGANIZATIONS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 27 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)

TABLE 28 ASIA-PACIFIC PAYMENT FRAUD DETECTION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 29 ASIA-PACIFIC MONEY LAUNDERING DETECTION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 30 ASIA-PACIFIC ACCOUNT TAKEOVER PROTECTION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 31 ASIA-PACIFIC IDENTITY THEFT PREVENTION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 32 ASIA-PACIFIC OTHERS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 33 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET, BY VERTICAL, 2022-2031 (USD THOUSAND)

TABLE 34 ASIA-PACIFIC BANKING, FINANCIAL SERVICES, AND INSURANCE (BFSI) IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 35 ASIA-PACIFIC BANKING, FINANCIAL SERVICES, AND INSURANCE (BFSI) IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 36 ASIA-PACIFIC RETAIL IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 37 ASIA-PACIFIC RETAIL IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 38 ASIA-PACIFIC IT & TELECOMMUNICATION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 39 ASIA-PACIFIC IT & TELECOMMUNICATION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 40 ASIA-PACIFIC GOVERNMENT & DEFENSE IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 41 ASIA-PACIFIC GOVERNMENT & DEFENSE IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 42 ASIA-PACIFIC HEALTHCARE IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 43 ASIA-PACIFIC HEALTHCARE IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 44 ASIA-PACIFIC MANUFACTURING IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 45 ASIA-PACIFIC MANUFACTURING IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 46 ASIA-PACIFIC ENERGY & UTILITIES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 47 ASIA-PACIFIC ENERGY & UTILITIES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 48 ASIA-PACIFIC OTHERS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 49 ASIA-PACIFIC OTHERS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 50 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET, BY COUNTRY, 2022-2031 (USD THOUSAND)

TABLE 51 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 52 ASIA-PACIFIC SERVICES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 53 ASIA-PACIFIC PROFESSIONAL SERVICES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 54 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)

TABLE 55 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 56 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET, BY ORGANIZATION SIZE, 2022-2031 (USD THOUSAND)

TABLE 57 ASIA-PACIFIC LARGE SIZE ORGANIZATIONS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 58 ASIA-PACIFIC SMALL & MEDIUM SIZED ORGANIZATION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 59 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)

TABLE 60 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET, BY VERTICAL, 2022-2031 (USD THOUSAND)

TABLE 61 ASIA-PACIFIC BANKING, FINANCIAL SERVICES, AND INSURANCE (BFSI) IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 62 ASIA-PACIFIC RETAIL IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 63 ASIA-PACIFIC IT & TELECOMMUNICATION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 64 ASIA-PACIFIC GOVERNMENT & DEFENSE IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 65 ASIA-PACIFIC HEALTHCARE IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 66 ASIA-PACIFIC MANUFACTURING IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 67 ASIA-PACIFIC ENERGY & UTILITIES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 68 ASIA-PACIFIC OTHERS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 69 CHINA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 70 CHINA SERVICES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 71 CHINA PROFESSIONAL SERVICES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 72 CHINA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)

TABLE 73 CHINA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 74 CHINA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY ORGANIZATION SIZE, 2022-2031 (USD THOUSAND)

TABLE 75 CHINA LARGE SIZE ORGANIZATIONS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 76 CHINA SMALL & MEDIUM SIZED ORGANIZATION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 77 CHINA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)

TABLE 78 CHINA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY VERTICAL, 2022-2031 (USD THOUSAND)

TABLE 79 CHINA BANKING, FINANCIAL SERVICES, AND INSURANCE (BFSI) IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 80 CHINA RETAIL IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 81 CHINA IT & TELECOMMUNICATION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 82 CHINA GOVERNMENT & DEFENSE IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 83 CHINA HEALTHCARE IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 84 CHINA MANUFACTURING IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 85 CHINA ENERGY & UTILITIES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 86 CHINA OTHERS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 87 JAPAN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 88 JAPAN SERVICES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 89 JAPAN PROFESSIONAL SERVICES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 90 JAPAN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)

TABLE 91 JAPAN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 92 JAPAN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY ORGANIZATION SIZE, 2022-2031 (USD THOUSAND)

TABLE 93 JAPAN LARGE SIZE ORGANIZATIONS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 94 JAPAN SMALL & MEDIUM SIZED ORGANIZATION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 95 JAPAN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)

TABLE 96 JAPAN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY VERTICAL, 2022-2031 (USD THOUSAND)

TABLE 97 JAPAN BANKING, FINANCIAL SERVICES, AND INSURANCE (BFSI) IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 98 JAPAN RETAIL IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 99 JAPAN IT & TELECOMMUNICATION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 100 JAPAN GOVERNMENT & DEFENSE IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 101 JAPAN HEALTHCARE IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 102 JAPAN MANUFACTURING IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 103 JAPAN ENERGY & UTILITIES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 104 JAPAN OTHERS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 105 INDIA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 106 INDIA SERVICES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 107 INDIA PROFESSIONAL SERVICES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 108 INDIA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)

TABLE 109 INDIA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 110 INDIA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY ORGANIZATION SIZE, 2022-2031 (USD THOUSAND)

TABLE 111 INDIA LARGE SIZE ORGANIZATIONS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 112 INDIA SMALL & MEDIUM SIZED ORGANIZATION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 113 INDIA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)

TABLE 114 INDIA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY VERTICAL, 2022-2031 (USD THOUSAND)

TABLE 115 INDIA BANKING, FINANCIAL SERVICES, AND INSURANCE (BFSI) IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 116 INDIA RETAIL IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 117 INDIA IT & TELECOMMUNICATION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 118 INDIA GOVERNMENT & DEFENSE IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 119 INDIA HEALTHCARE IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 120 INDIA MANUFACTURING IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 121 INDIA ENERGY & UTILITIES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 122 INDIA OTHERS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 123 SOUTH KOREA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 124 SOUTH KOREA SERVICES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 125 SOUTH KOREA PROFESSIONAL SERVICES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 126 SOUTH KOREA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)

TABLE 127 SOUTH KOREA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 128 SOUTH KOREA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY ORGANIZATION SIZE, 2022-2031 (USD THOUSAND)

TABLE 129 SOUTH KOREA LARGE SIZE ORGANIZATIONS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 130 SOUTH KOREA SMALL & MEDIUM SIZED ORGANIZATION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 131 SOUTH KOREA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)

TABLE 132 SOUTH KOREA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY VERTICAL, 2022-2031 (USD THOUSAND)

TABLE 133 SOUTH KOREA BANKING, FINANCIAL SERVICES, AND INSURANCE (BFSI) IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 134 SOUTH KOREA RETAIL IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 135 SOUTH KOREA IT & TELECOMMUNICATION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 136 SOUTH KOREA GOVERNMENT & DEFENSE IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 137 SOUTH KOREA HEALTHCARE IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 138 SOUTH KOREA MANUFACTURING IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 139 SOUTH KOREA ENERGY & UTILITIES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 140 SOUTH KOREA OTHERS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 141 AUSTRALIA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 142 AUSTRALIA SERVICES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 143 AUSTRALIA PROFESSIONAL SERVICES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 144 AUSTRALIA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)

TABLE 145 AUSTRALIA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 146 AUSTRALIA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY ORGANIZATION SIZE, 2022-2031 (USD THOUSAND)

TABLE 147 AUSTRALIA LARGE SIZE ORGANIZATIONS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 148 AUSTRALIA SMALL & MEDIUM SIZED ORGANIZATION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 149 AUSTRALIA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)

TABLE 150 AUSTRALIA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY VERTICAL, 2022-2031 (USD THOUSAND)

TABLE 151 AUSTRALIA BANKING, FINANCIAL SERVICES, AND INSURANCE (BFSI) IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 152 AUSTRALIA RETAIL IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 153 AUSTRALIA IT & TELECOMMUNICATION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 154 AUSTRALIA GOVERNMENT & DEFENSE IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 155 AUSTRALIA HEALTHCARE IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 156 AUSTRALIA MANUFACTURING IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 157 AUSTRALIA ENERGY & UTILITIES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 158 AUSTRALIA OTHERS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 159 NEW ZEALAND FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 160 NEW ZEALAND SERVICES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 161 NEW ZEALAND PROFESSIONAL SERVICES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 162 NEW ZEALAND FRAUD DETECTION TRANSACTION MONITORING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)

TABLE 163 NEW ZEALAND FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 164 NEW ZEALAND FRAUD DETECTION TRANSACTION MONITORING MARKET, BY ORGANIZATION SIZE, 2022-2031 (USD THOUSAND)

TABLE 165 NEW ZEALAND LARGE SIZE ORGANIZATIONS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 166 NEW ZEALAND SMALL & MEDIUM SIZED ORGANIZATION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 167 NEW ZEALAND FRAUD DETECTION TRANSACTION MONITORING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)

TABLE 168 NEW ZEALAND FRAUD DETECTION TRANSACTION MONITORING MARKET, BY VERTICAL, 2022-2031 (USD THOUSAND)

TABLE 169 NEW ZEALAND BANKING, FINANCIAL SERVICES, AND INSURANCE (BFSI) IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 170 NEW ZEALAND RETAIL IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 171 NEW ZEALAND IT & TELECOMMUNICATION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 172 NEW ZEALAND GOVERNMENT & DEFENSE IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 173 NEW ZEALAND HEALTHCARE IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 174 NEW ZEALAND MANUFACTURING IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 175 NEW ZEALAND ENERGY & UTILITIES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 176 NEW ZEALAND OTHERS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 177 INDONESIA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 178 INDONESIA SERVICES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 179 INDONESIA PROFESSIONAL SERVICES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 180 INDONESIA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)

TABLE 181 INDONESIA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 182 INDONESIA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY ORGANIZATION SIZE, 2022-2031 (USD THOUSAND)

TABLE 183 INDONESIA LARGE SIZE ORGANIZATIONS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 184 INDONESIA SMALL & MEDIUM SIZED ORGANIZATION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 185 INDONESIA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)

TABLE 186 INDONESIA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY VERTICAL, 2022-2031 (USD THOUSAND)

TABLE 187 INDONESIA BANKING, FINANCIAL SERVICES, AND INSURANCE (BFSI) IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 188 INDONESIA RETAIL IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 189 INDONESIA IT & TELECOMMUNICATION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 190 INDONESIA GOVERNMENT & DEFENSE IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 191 INDONESIA HEALTHCARE IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 192 INDONESIA MANUFACTURING IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 193 INDONESIA ENERGY & UTILITIES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 194 INDONESIA OTHERS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 195 THAILAND FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 196 THAILAND SERVICES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 197 THAILAND PROFESSIONAL SERVICES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 198 THAILAND FRAUD DETECTION TRANSACTION MONITORING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)

TABLE 199 THAILAND FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 200 THAILAND FRAUD DETECTION TRANSACTION MONITORING MARKET, BY ORGANIZATION SIZE, 2022-2031 (USD THOUSAND)

TABLE 201 THAILAND LARGE SIZE ORGANIZATIONS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 202 THAILAND SMALL & MEDIUM SIZED ORGANIZATION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 203 THAILAND FRAUD DETECTION TRANSACTION MONITORING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)

TABLE 204 THAILAND FRAUD DETECTION TRANSACTION MONITORING MARKET, BY VERTICAL, 2022-2031 (USD THOUSAND)

TABLE 205 THAILAND BANKING, FINANCIAL SERVICES, AND INSURANCE (BFSI) IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 206 THAILAND RETAIL IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 207 THAILAND IT & TELECOMMUNICATION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 208 THAILAND GOVERNMENT & DEFENSE IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 209 THAILAND HEALTHCARE IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 210 THAILAND MANUFACTURING IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 211 THAILAND ENERGY & UTILITIES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 212 THAILAND OTHERS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 213 MALAYSIA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 214 MALAYSIA SERVICES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 215 MALAYSIA PROFESSIONAL SERVICES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 216 MALAYSIA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)

TABLE 217 MALAYSIA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 218 MALAYSIA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY ORGANIZATION SIZE, 2022-2031 (USD THOUSAND)

TABLE 219 MALAYSIA LARGE SIZE ORGANIZATIONS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 220 MALAYSIA SMALL & MEDIUM SIZED ORGANIZATION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 221 MALAYSIA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)

TABLE 222 MALAYSIA FRAUD DETECTION TRANSACTION MONITORING MARKET, BY VERTICAL, 2022-2031 (USD THOUSAND)

TABLE 223 MALAYSIA BANKING, FINANCIAL SERVICES, AND INSURANCE (BFSI) IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 224 MALAYSIA RETAIL IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 225 MALAYSIA IT & TELECOMMUNICATION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 226 MALAYSIA GOVERNMENT & DEFENSE IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 227 MALAYSIA HEALTHCARE IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 228 MALAYSIA MANUFACTURING IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 229 MALAYSIA ENERGY & UTILITIES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 230 MALAYSIA OTHERS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 231 SINGAPORE FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 232 SINGAPORE SERVICES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 233 SINGAPORE PROFESSIONAL SERVICES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 234 SINGAPORE FRAUD DETECTION TRANSACTION MONITORING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)

TABLE 235 SINGAPORE FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 236 SINGAPORE FRAUD DETECTION TRANSACTION MONITORING MARKET, BY ORGANIZATION SIZE, 2022-2031 (USD THOUSAND)

TABLE 237 SINGAPORE LARGE SIZE ORGANIZATIONS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 238 SINGAPORE SMALL & MEDIUM SIZED ORGANIZATION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 239 SINGAPORE FRAUD DETECTION TRANSACTION MONITORING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)

TABLE 240 SINGAPORE FRAUD DETECTION TRANSACTION MONITORING MARKET, BY VERTICAL, 2022-2031 (USD THOUSAND)

TABLE 241 SINGAPORE BANKING, FINANCIAL SERVICES, AND INSURANCE (BFSI) IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 242 SINGAPORE RETAIL IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 243 SINGAPORE IT & TELECOMMUNICATION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 244 SINGAPORE GOVERNMENT & DEFENSE IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 245 SINGAPORE HEALTHCARE IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 246 SINGAPORE MANUFACTURING IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 247 SINGAPORE ENERGY & UTILITIES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 248 SINGAPORE OTHERS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 249 PHILIPPINES FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 250 PHILIPPINES SERVICES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 251 PHILIPPINES PROFESSIONAL SERVICES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 252 PHILIPPINES FRAUD DETECTION TRANSACTION MONITORING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)

TABLE 253 PHILIPPINES FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 254 PHILIPPINES FRAUD DETECTION TRANSACTION MONITORING MARKET, BY ORGANIZATION SIZE, 2022-2031 (USD THOUSAND)

TABLE 255 PHILIPPINES LARGE SIZE ORGANIZATIONS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 256 PHILIPPINES SMALL & MEDIUM SIZED ORGANIZATION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 257 PHILIPPINES FRAUD DETECTION TRANSACTION MONITORING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)

TABLE 258 PHILIPPINES FRAUD DETECTION TRANSACTION MONITORING MARKET, BY VERTICAL, 2022-2031 (USD THOUSAND)

TABLE 259 PHILIPPINES BANKING, FINANCIAL SERVICES, AND INSURANCE (BFSI) IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 260 PHILIPPINES RETAIL IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 261 PHILIPPINES IT & TELECOMMUNICATION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 262 PHILIPPINES GOVERNMENT & DEFENSE IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 263 PHILIPPINES HEALTHCARE IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 264 PHILIPPINES MANUFACTURING IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 265 PHILIPPINES ENERGY & UTILITIES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 266 PHILIPPINES OTHERS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 267 TAIWAN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 268 TAIWAN SERVICES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 269 TAIWAN PROFESSIONAL SERVICES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 270 TAIWAN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)

TABLE 271 TAIWAN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 272 TAIWAN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY ORGANIZATION SIZE, 2022-2031 (USD THOUSAND)

TABLE 273 TAIWAN LARGE SIZE ORGANIZATIONS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 274 TAIWAN SMALL & MEDIUM SIZED ORGANIZATION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 275 TAIWAN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)

TABLE 276 TAIWAN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY VERTICAL, 2022-2031 (USD THOUSAND)

TABLE 277 TAIWAN BANKING, FINANCIAL SERVICES, AND INSURANCE (BFSI) IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 278 TAIWAN RETAIL IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 279 TAIWAN IT & TELECOMMUNICATION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 280 TAIWAN GOVERNMENT & DEFENSE IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 281 TAIWAN HEALTHCARE IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 282 TAIWAN MANUFACTURING IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 283 TAIWAN ENERGY & UTILITIES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 284 TAIWAN OTHERS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 285 VIETNAM FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 286 VIETNAM SERVICES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 287 VIETNAM PROFESSIONAL SERVICES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 288 VIETNAM FRAUD DETECTION TRANSACTION MONITORING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)

TABLE 289 VIETNAM FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 290 VIETNAM FRAUD DETECTION TRANSACTION MONITORING MARKET, BY ORGANIZATION SIZE, 2022-2031 (USD THOUSAND)

TABLE 291 VIETNAM LARGE SIZE ORGANIZATIONS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 292 VIETNAM SMALL & MEDIUM SIZED ORGANIZATION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY DEPLOYMENT MODE, 2022-2031 (USD THOUSAND)

TABLE 293 VIETNAM FRAUD DETECTION TRANSACTION MONITORING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)

TABLE 294 VIETNAM FRAUD DETECTION TRANSACTION MONITORING MARKET, BY VERTICAL, 2022-2031 (USD THOUSAND)

TABLE 295 VIETNAM BANKING, FINANCIAL SERVICES, AND INSURANCE (BFSI) IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 296 VIETNAM RETAIL IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 297 VIETNAM IT & TELECOMMUNICATION IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 298 VIETNAM GOVERNMENT & DEFENSE IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 299 VIETNAM HEALTHCARE IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 300 VIETNAM MANUFACTURING IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 301 VIETNAM ENERGY & UTILITIES IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 302 VIETNAM OTHERS IN FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 303 REST OF ASIA PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

Abbildungsverzeichnis

FIGURE 1 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET: SEGMENTATION

FIGURE 2 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET: DATA TRIANGULATION

FIGURE 3 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET: DROC ANALYSIS

FIGURE 4 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET: ASIA-PACIFIC VS REGIONAL MARKET ANALYSIS

FIGURE 5 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET: COMPANY RESEARCH ANALYSIS

FIGURE 6 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET: INTERVIEW DEMOGRAPHICS

FIGURE 7 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET: DBMR MARKET POSITION GRID

FIGURE 8 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET: VENDOR SHARE ANALYSIS

FIGURE 9 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET: MULTIVARIATE MODELING

FIGURE 10 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET: OFFERING TIMELINE CURVE

FIGURE 11 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET: MARKET APPLICATION COVERAGE GRID

FIGURE 12 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET: SEGMENTATION

FIGURE 13 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET

FIGURE 14 TWO SEGMENTS COMPRISE THE ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET, BY OFFERING (2023)

FIGURE 15 STRATEGIC DECISIONS

FIGURE 16 RISING NEED FOR ROBUST DETECTION SYSTEMS THAT CAN ADAPT TO NEW THREATS IS EXPECTED TO DRIVE THE ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET DURING THE FORECAST PERIOD OF 2024 TO 2031

FIGURE 17 SOLUTION SEGMENT IS EXPECTED TO ACCOUNT FOR THE LARGEST SHARE OF THE ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET IN 2024 & 2031

FIGURE 18 TYPE OF FINANCIAL INTELLIGENCE UNITS

FIGURE 19 TRADITIONAL SERVICE TRANSACTION VS BLOCKCHAIN BASED SERVICE TRANSACTION

FIGURE 20 VALUE CHAIN FOR FRAUD DETECTION TRANSACTION MONITORING MARKET

FIGURE 21 DRIVERS, RESTRAINTS, OPPORTUNITIES, AND CHALLENGES OF ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET

FIGURE 22 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET: BY OFFERING, 2023

FIGURE 23 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET: BY FUNCTION, 2023

FIGURE 24 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET: BY DEPLOYMENT MODE, 2023

FIGURE 25 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET: BY ORGANIZATION SIZE, 2023

FIGURE 26 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET: BY APPLICATION, 2023

FIGURE 27 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET: BY VERTICAL, 2023

FIGURE 28 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET: SNAPSHOT 2023

FIGURE 29 ASIA-PACIFIC FRAUD DETECTION TRANSACTION MONITORING MARKET: COMPANY SHARE 2023 (%)

Detaillierte Informationen anzeigen Right Arrow

Forschungsmethodik

Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.

Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.

Anpassung möglich

Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.

Häufig gestellte Fragen

The Asia Pacific Fraud Detection Transaction Monitoring Market size was valued at USD 3.4 billion in 2023.
The Asia Pacific Fraud Detection Transaction Monitoring Market is projected to grow at a CAGR of 21.1% from 2024 to 2031.
Rising need for robust detection systems that can adapt to new threats, Increased focus on identity verification and authentication, growing awareness among consumers about fraud risks and Increasing demand for real-time transaction monitoring across BFSI sector are the major growth driving factors.
Amazon Web Services, Inc. (U.S.), LexisNexis (Subsidiary of Reed Elsevier) (U.S.), Mastercard (U.S.), TATA Consultancy Services Limited (India), Fiserv, Inc., (U.S.), SAS Institute Inc. (U.S.), ACI Worldwide (U.S.), Oracle (U.S.), NICE (Israel), FICO (U.S.), SymphonyAI (U.S.), UBIQUITY (U.S.), Verafin Solutions ULC (Subsidiary of Nasdaq Inc.) (Canada), GB Group plc (‘GBG’) (U.K.), INFORM SOFTWARE (U.S.), Quantexa (U.S.), Feedzai (U.S.), Sum and Substance LTD (UK), DataVisor, Inc. (U.S.), HAWK (Germany), Featurespace Limited (U.K.), INETCO Systems Ltd., (Canada) Abram Innovations Inc. (U.S.), Sanction Scanner (U.K.), and SEON Technologies Ltd. (Hungary) among others.
The countries covered in the market are China, Australia, Japan, South Korea, India, New Zealand, Taiwan, Singapore, Malaysia, Thailand, Vietnam, Indonesia, Philippines, and Rest of Asia-Pacific.