>Künstliche Intelligenz (KI) im asiatisch-pazifischen Markt für Arzneimittelentdeckung, nach Anwendung (neue Arzneimittelkandidaten, Arzneimitteloptimierung und -umwidmung, präklinische Tests und Zulassung, Arzneimittelüberwachung, Suche nach mit neuen Krankheiten verbundenen Zielen und Wirkungswegen, Verständnis von Krankheitsmechanismen, Aggregieren und Synthetisieren von Informationen, Bildung und Qualifizierung von Hypothesen, De-novo-Arzneimitteldesign, Suche nach Arzneimittelzielen eines alten Arzneimittels und andere), Technologie (Maschinelles Lernen, Deep Learning, Verarbeitung natürlicher Sprache und andere), Arzneimitteltyp (kleine und große Moleküle), Angebot (Software und Dienstleistungen), Indikation (Immunonkologie, neurodegenerative Erkrankungen, Herz-Kreislauf-Erkrankungen, Stoffwechselerkrankungen und andere), Endverbrauch (Auftragsforschungsinstitute (CROs), Pharma- und Biotechnologieunternehmen, Forschungszentren und akademische Institute und andere), Branchentrends und Prognose bis 2029.
Künstliche Intelligenz (KI) in der Arzneimittelentdeckung – Marktanalyse und Einblicke im asiatisch-pazifischen Raum
Künstliche Intelligenz (KI) wird voraussichtlich eine lukrative Technologie in der Gesundheitsbranche sein. Die Implementierung von KI verringert die F&E-Lücke im Arzneimittelherstellungsprozess und hilft bei der gezielten Herstellung von Arzneimitteln. Daher setzen biopharmazeutische Unternehmen auf KI, um ihren Marktanteil zu steigern. KI für die Arzneimittelentdeckung ist eine Technologie, die Maschinen verwendet, um menschliche Intelligenz zu simulieren und so komplizierte Herausforderungen im Arzneimittelentwicklungsverfahren zu lösen.
Der Einsatz von KI-Lösungen im klinischen Testprozess beseitigt mögliche Hindernisse, verkürzt die Zykluszeit klinischer Tests und erhöht die Produktivität und Genauigkeit des klinischen Testprozesses. Technologische Fortschritte bei der KI für die Arzneimittelentdeckung und die Verkürzung der Gesamtzeit, die für den Arzneimittelentdeckungsprozess benötigt wird, sind weitere Faktoren, die das Marktwachstum im Prognosezeitraum vorantreiben. Allerdings werden minderwertige und inkonsistente verfügbare Daten das Marktwachstum behindern. Auch hohe Kosten im Zusammenhang mit Technologie und technischen Einschränkungen werden das Marktwachstum hemmen.
Data Bridge Market Research analysiert, dass der Markt für künstliche Intelligenz (KI) in der Arzneimittelforschung im asiatisch-pazifischen Raum bis 2029 voraussichtlich einen Wert von 3.424,04 Millionen USD erreichen wird, was einer durchschnittlichen jährlichen Wachstumsrate von 50,9 % während des Prognosezeitraums entspricht. Software stellt aufgrund der rasanten technologischen Entwicklung zur Kommerzialisierung des Einsatzes von KI in der Arzneimittelforschung das größte Technologiesegment auf dem Markt dar. Dieser Marktbericht behandelt auch ausführlich Preisanalysen, Patentanalysen und technologische Fortschritte.
Berichtsmetrik |
Details |
Prognosezeitraum |
2022 bis 2029 |
Basisjahr |
2021 |
Historische Jahre |
2020 (anpassbar auf 2019–2014) |
Quantitative Einheiten |
Umsatz in Millionen USD, Preise in USD |
Abgedeckte Segmente |
Nach Anwendung (neue Arzneimittelkandidaten, Arzneimitteloptimierung und -umwidmung, präklinische Tests und Zulassung, Arzneimittelüberwachung, Suche nach mit neuen Krankheiten verbundenen Zielen und Wirkungswegen, Verständnis von Krankheitsmechanismen, Zusammentragen und Synthetisieren von Informationen, Bildung und Qualifizierung von Hypothesen, De-novo-Arzneimitteldesign, Suche nach Zielen für ein altes Arzneimittel und andere), Technologie (Maschinelles Lernen, Deep Learning, Verarbeitung natürlicher Sprache und andere), Arzneimitteltyp (kleine und große Moleküle), Angebot (Software und Dienstleistungen), Indikation ( Immunonkologie , neurodegenerative Erkrankungen, Herz-Kreislauf-Erkrankungen, Stoffwechselerkrankungen und andere), Endverbrauch (Auftragsforschungsinstitute (CROs), Pharma- und Biotechnologieunternehmen, Forschungszentren und akademische Institute und andere) |
Abgedeckte Länder |
China, Japan, Indien, Südkorea, Singapur, Thailand, Malaysia, Australien und Neuseeland, Philippinen, Indonesien, Rest des asiatisch-pazifischen Raums |
Abgedeckte Marktteilnehmer |
Zu den wichtigsten Akteuren auf dem Markt zählen unter anderem NVIDIA Corporation, IBM Corp., Atomwise Inc., Microsoft, Benevolent AI, Aria Pharmaceuticals, Inc., DEEP GENOMICS, Exscientia, Cloud, Insilico Medicine, Cyclica, NuMedii, Inc., Envisagenics, Owkin Inc., BERG LLC, Schrödinger, Inc., XtalPi Inc. und BIOAGE Inc. |
Künstliche Intelligenz (KI) in der Arzneimittelentdeckung im asiatisch-pazifischen Raum – Marktdefinition
KI hat in den letzten Jahren die Aufmerksamkeit und Aufmerksamkeit von Medizintechnikern auf sich gezogen, da mehrere Unternehmen und große Forschungslabore daran gearbeitet haben, diese Technologien für den klinischen Einsatz zu perfektionieren. Die ersten kommerziellen Demonstrationen, wie KI (auch bekannt als Deep Learning (DL), Machine Learning (ML) oder künstliche neuronale Netzwerke (KNN)) Kliniker unterstützen könnte, sind jetzt verfügbar. Diese Systeme könnten zu einem Paradigmenwechsel im Arbeitsablauf von Klinikern führen und die Produktivität steigern, während gleichzeitig die Behandlung und der Patientendurchsatz verbessert werden. KI für die Arzneimittelforschung ist eine Technologie, die Maschinen verwendet, um menschliche Intelligenz zu simulieren und komplizierte Herausforderungen im Arzneimittelentwicklungsverfahren zu lösen. Die Einführung von KI-Lösungen im klinischen Testprozess beseitigt mögliche Hindernisse, verkürzt die Zykluszeit klinischer Tests und erhöht die Produktivität und Genauigkeit des klinischen Testprozesses. Daher gewinnt die Einführung dieser fortschrittlichen KI-Lösungen in Arzneimittelforschungsprozessen bei den Beteiligten der Biowissenschaftsbranche an Popularität. Im Pharmasektor hilft sie bei der Entdeckung neuer Verbindungen, der Identifizierung therapeutischer Ziele und der Entwicklung maßgeschneiderter Medikamente. KI-Plattformen, die zur Arzneimittelforschung eingesetzt werden, können sich als praktikable Option erweisen, um Erkenntnisse für die Entdeckung von Medikamenten zur Behandlung und Minimierung der Schwere verschiedener chronischer Krankheiten zu gewinnen.
Künstliche Intelligenz (KI) in der Arzneimittelentdeckung im asiatisch-pazifischen Raum – Marktdynamik
In diesem Abschnitt geht es um das Verständnis der Markttreiber, Vorteile, Chancen, Einschränkungen und Herausforderungen. All dies wird im Folgenden ausführlich erläutert:
Treiber
- Anstieg chronischer Erkrankungen erfordert KI bei der Arzneimittelforschung
Die Zahl chronischer Krankheiten nimmt weltweit rasant zu. Laut den Centers for Disease Control and Prevention (CDC) leiden in den USA sechs von zehn Erwachsenen an einer chronischen Krankheit. Darüber hinaus weist das CDC darauf hin, dass chronische Krankheiten wie Herzkrankheiten und Diabetes die häufigsten Todesursachen in den USA sind. Solche Statistiken verdeutlichen die zunehmende Verbreitung chronischer Krankheiten und die Notwendigkeit, die durch diese Krankheiten verursachte Sterblichkeitsrate zu senken.
KI-Plattformen, die zur Arzneimittelentdeckung eingesetzt werden, können sich als praktikable Option erweisen, um Erkenntnisse zur Entdeckung von Arzneimitteln zur Behandlung und Minimierung der Schwere verschiedener chronischer Krankheiten zu gewinnen. Daher wird erwartet, dass diese Faktoren im Prognosezeitraum als Treiber für das Marktwachstum wirken werden.
- Strategische Kooperationen, Partnerschaften und Produkteinführungen
KI hat das Potenzial, die Arzneimittelforschung zu verändern, indem sie die Zeit für Forschung und Entwicklung deutlich verkürzt, die Arzneimittelentwicklung kostengünstiger und schneller macht und die Wahrscheinlichkeit einer Zulassung erhöht. KI kann auch die Effektivität der Forschung zur Neuverwendung von Arzneimitteln steigern.
Der Markt wird durch eine Zunahme branchenübergreifender Allianzen und Kooperationen angetrieben. Die zunehmende Bedeutung von KI bei der Arzneimittelforschung und -entwicklung sowie ein Anstieg der Finanzierung von F&E-Aktivitäten, einschließlich KI-Technologie im Bereich der Arzneimittelforschung, werden voraussichtlich das globale Marktwachstum vorantreiben. Daher treibt die Zunahme branchenübergreifender Kooperationen und Partnerschaften den Markt an.
Zurückhaltung
- Hohe Kosten im Zusammenhang mit Technologie und technischen Einschränkungen
Der aktuelle Gesundheitssektor steht vor mehreren komplexen Herausforderungen, wie den steigenden Kosten für Medikamente und Therapien, und die Gesellschaft braucht in diesem Bereich spezifische, bedeutende Veränderungen. Der gesamte Erfolg der KI hängt von der Verfügbarkeit einer beträchtlichen Menge an Daten ab, da diese Daten für das anschließende Training des Systems verwendet werden. Der Zugriff auf Daten von verschiedenen Datenbankanbietern kann für ein Unternehmen zusätzliche Kosten verursachen. Klinische Studien zielen darauf ab, die Sicherheit und Wirksamkeit eines Arzneimittels für einen bestimmten Krankheitszustand beim Menschen festzustellen und dauern sechs bis sieben Jahre sowie eine erhebliche finanzielle Investition. Allerdings wird nur eines von zehn Molekülen, die an diesen Studien teilnehmen, erfolgreich zugelassen, was einen enormen Verlust für die Branche darstellt. Diese Misserfolge können auf eine unangemessene Patientenauswahl, mangelnde technische Anforderungen und eine schlechte Infrastruktur zurückzuführen sein. Die steigenden Kosten der Technologie wirken sich daher als Hemmnis für das Marktwachstum aus.
Gelegenheit
-
Anstieg der Investitionen in Forschung und Entwicklung
Die Zunahme der F&E-Aktivitäten und die zunehmende Nutzung cloudbasierter Dienste und Anwendungen werden günstige Möglichkeiten für ein Marktwachstum bieten.
Die KI-Branche in der Biopharmazie wächst nach einer langen Phase der Stagnation weiter. Dies spiegelt sich im anhaltenden Investitionsfluss und der Zunahme der Zahl der Kooperationen zwischen Pharmaunternehmen und KI-Unternehmen im Jahr 2021 im Vergleich zu den Vorjahren wider. Das Wachstum der Biopharma-Branche wird weitgehend durch das aktive Engagement führender Pharmaunternehmen bei KI-bezogenen Investitionen beeinflusst. Die Zahl der wissenschaftlichen Veröffentlichungen im Bereich der KI in der Biopharmazie sowie die Forschungskooperationen zwischen Pharmaunternehmen und Anbietern von KI-Expertise nehmen rapide zu, dennoch stehen einige Pharmaunternehmen KI-Anwendungen immer noch kritisch gegenüber. ML- und KI-Anwendungen in der Pharma- und Gesundheitsbranche führen zur Entstehung eines neuen interdisziplinären Felds der datengesteuerten Arzneimittelforschung im Gesundheitswesen. Daher bietet der Anstieg der Investitionen in F&E-Aktivitäten eine Chance für Marktwachstum.
Herausforderung
- Fachkräftemangel
Der Mangel an Fachkräften dürfte das Marktwachstum behindern. Die Mitarbeiter müssen umgeschult werden oder neue Fähigkeiten erlernen, um effizient an den komplexen KI-Maschinen arbeiten zu können und die gewünschten Ergebnisse für das Medikament zu erzielen. Zu den Herausforderungen, die eine umfassende Einführung von KI in der Pharmaindustrie verhindern, gehören der Mangel an qualifiziertem Personal für den Betrieb KI-basierter Plattformen, ein begrenztes Budget für kleine Unternehmen, die Befürchtung, dass der Ersatz von Menschen zu Arbeitsplatzverlusten führt, Skepsis gegenüber den von KI generierten Daten und das Black-Box-Phänomen (also die Frage, wie die KI-Plattform zu ihren Schlussfolgerungen gelangt). Der Mangel an Fachkräften stellt ein großes Hindernis für die Arzneimittelforschung durch KI dar und hält Unternehmen davon ab, KI-basierte Maschinen für die Arzneimittelforschung einzusetzen.
Da die Anforderungen an die Qualifikationen zu hoch sind, ist es eine Herausforderung, Fachkräfte mit den entsprechenden Qualifikationen zu halten und zu verwalten. Darüber hinaus ist der technologische Fortschritt ein weiterer Aspekt, der zu einer erhöhten Nachfrage nach Fachkräften führt. Es besteht ein dringender Bedarf an der Ausbildung von Fachkräften für KI-basierte Technologie. Der Mangel an ausgebildeten und erfahrenen Fachkräften und anhaltende Qualifikationslücken schränken die Beschäftigungsaussichten und den Zugang zu hochwertigen Arbeitsplätzen ein. Es ist daher offensichtlich, dass die Verfügbarkeit von Fachkräften mit den entsprechenden Qualifikationen das Marktwachstum herausfordert.
Auswirkungen von COVID-19 auf den Markt für künstliche Intelligenz (KI) im asiatisch-pazifischen Raum in der Arzneimittelentdeckung
Der COVID-19-Ausbruch hatte einen positiven Einfluss auf die Verbreitung von KI in der Arzneimittelforschungsbranche, da sie von verschiedenen Organisationen zur Identifizierung und zum Screening bestehender Medikamente zur Behandlung von COVID-19 weithin eingesetzt wird. KI ist nützlich bei der Erkennung aktiver Chemikalien zur Vorbeugung von SARS-CoV, HIV, SARS-CoV-2, Grippeviren und anderen. Während der Pandemie verließen sich Volkswirtschaften auf der ganzen Welt auf KI-basierte Medikamentenentdeckung statt auf traditionelle Impfstofferkennungsverfahren, deren Entwicklung Jahre dauert und ebenso teuer ist, was zum Wachstum des Marktes beitrug.
Die Hersteller treffen verschiedene strategische Entscheidungen, um nach COVID-19 wieder auf die Beine zu kommen. Die Akteure führen zahlreiche Forschungs- und Entwicklungsaktivitäten durch, um die Technologie des drahtlosen Mikrofons zu verbessern. Damit werden die Unternehmen fortschrittliche und präzise KI-Software auf den Markt bringen.
Jüngste Entwicklungen
- Im März 2022 brachte NVIDIA Corporation Clara Holoscan MGX auf den Markt, um KI-Anwendungen in Echtzeit zu entwickeln und bereitzustellen. Clara Holoscan MGX erweitert die Clara Holoscan-Plattform, um eine umfassende Referenzarchitektur in medizinischer Qualität sowie langfristigen Software-Support bereitzustellen und so Innovationen in der Medizingerätebranche voranzutreiben. Dies wird dem Unternehmen dabei helfen, eine bessere KI-Leistung im Gesundheitssektor für Chirurgie, Diagnostik und Arzneimittelforschung zu erzielen.
- Im Mai 2022 gab Benevolent AI, ein führendes KI-gestütztes Arzneimittelforschungsunternehmen im klinischen Stadium, bekannt, dass AstraZeneca ein weiteres neues Ziel für idiopathische Lungenfibrose (IPF) für sein Arzneimittelentwicklungsportfolio ausgewählt hat, was zu einer Meilensteinzahlung an Benevolent AI führte. Dies ist das dritte neue Ziel aus der Zusammenarbeit, das mithilfe der Benevolent-Plattform in zwei Krankheitsbereichen, IPF und chronische Nierenerkrankung, identifiziert und anschließend von AstraZeneca validiert und für die Aufnahme in sein Portfolio ausgewählt wurde. Dies baut auf der kürzlichen Ausweitung der Zusammenarbeit mit AstraZeneca auf zwei neue Krankheitsbereiche, systemischer Lupus erythematodes und Herzinsuffizienz, auf, die im Januar 2022 unterzeichnet wurde. Dies hat dem Unternehmen geholfen, seine Zusammenarbeit zu stärken.
Künstliche Intelligenz (KI) in der Arzneimittelentdeckung im asiatisch-pazifischen Markt
Der Markt für künstliche Intelligenz (KI) in der Arzneimittelforschung im asiatisch-pazifischen Raum ist nach Anwendung, Technologie, Arzneimitteltyp, Angebot, Indikation und Endverbrauch segmentiert. Das Wachstum zwischen den Segmenten hilft Ihnen bei der Analyse von Nischenwachstumsbereichen und Strategien zur Marktansprache sowie bei der Bestimmung Ihrer Kernanwendungsbereiche und der Unterschiede in Ihren Zielmärkten.
ANWENDUNG
- Neue Arzneimittelkandidaten
- Arzneimitteloptimierung und -umwidmung, präklinische Tests und Zulassung
- Arzneimittelüberwachung
- Neue mit Krankheiten verbundene Ziele und Wege finden
- Krankheitsmechanismen verstehen
- Aggregieren und Zusammenfassen von Informationen
- Bildung und Qualifizierung von Hypothesen
- De-Novo-Arzneimitteldesign
- Wirkstofftargets eines alten Medikaments finden
- Sonstiges
Basierend auf der Anwendung ist der Markt segmentiert in neue Arzneimittelkandidaten, Arzneimitteloptimierung und Umwidmung präklinischer Tests und Zulassungen, Arzneimittelüberwachung, Suche nach neuen, mit Krankheiten verbundenen Zielen und Signalwegen, Verständnis von Krankheitsmechanismen, Zusammentragen und Synthetisieren von Informationen, Bildung und Qualifizierung von Hypothesen, De-novo-Arzneimitteldesign, Suche nach Arzneimittelzielen für alte Arzneimittel und andere.
TECHNOLOGIE
- Maschinelles Lernen (ML)
- Tiefes Lernen (DL)
- Verarbeitung natürlicher Sprache (NLP)
- Sonstiges
Basierend auf der Technologie ist der Markt in Maschinelles Lernen (ML), Deep Learning (DL), Verarbeitung natürlicher Sprache (NLP) und andere segmentiert.
ARZNEIMITTELTYP
- Kleines Molekül
- Großes Molekül
Basierend auf dem Arzneimitteltyp ist der Markt in kleine und große Moleküle segmentiert.
ANGEBOT
- Software
- Dienstleistungen
Basierend auf dem Angebot ist der Markt in Software und Dienstleistungen segmentiert.
ANZEIGE
- Immunonkologie
- Neurodegenerative Erkrankungen
- Herz-Kreislauf-Erkrankungen
- Stoffwechselerkrankungen
- Sonstiges
Je nach Indikation ist der Markt in Immunonkologie, neurodegenerative Erkrankungen, Herz-Kreislauf-Erkrankungen, Stoffwechselerkrankungen und andere unterteilt.
ENDVERWENDUNG
- Pharma- und Biotechnologieunternehmen
- Auftragsforschungsinstitute (CROs)
- Forschungszentren und akademische Institute
- Sonstiges
Basierend auf der Endnutzung ist der Markt in Pharma- und Biotechnologieunternehmen, Auftragsforschungsinstitute (CROs), Forschungszentren und akademische Institute und andere segmentiert.
Künstliche Intelligenz (KI) in der Arzneimittelentdeckung – Regionale Analyse/Einblicke im asiatisch-pazifischen Raum
Der Markt für künstliche Intelligenz (KI) in der Arzneimittelentdeckung im asiatisch-pazifischen Raum wird analysiert und Informationen zur Marktgröße werden nach Anwendung, Technologie, Arzneimitteltyp, Angebot, Indikation und Endverbrauch bereitgestellt.
Die in diesem Marktbericht abgedeckten Länder sind China, Japan, Indien, Südkorea, Singapur, Thailand, Malaysia, Australien und Neuseeland, die Philippinen, Indonesien und der restliche asiatisch-pazifische Raum.
- Im Jahr 2022 ist der asiatisch-pazifische Raum die drittwichtigste Region aufgrund der höheren Nachfrage nach Diagnosekits für Infektionskrankheiten aufgrund der wachsenden Patientenzahl und des steigenden Bewusstseins der Bevölkerung. Für China wird aufgrund des technologischen Fortschritts im Bereich der KI zur Arzneimittelentdeckung ein Wachstum erwartet.
Der Länderabschnitt des Berichts enthält auch individuelle marktbeeinflussende Faktoren und Änderungen der Regulierung auf dem Inlandsmarkt, die sich auf die aktuellen und zukünftigen Markttrends auswirken. Datenpunkte wie Neuverkäufe, Ersatzverkäufe, Länderdemografie, Regulierungsgesetze und Import-/Exportzölle sind einige der wichtigsten Anhaltspunkte, die zur Prognose des Marktszenarios für einzelne Länder verwendet werden. Bei der Prognoseanalyse der Länderdaten werden auch die Präsenz und Verfügbarkeit von Marken aus dem asiatisch-pazifischen Raum und ihre Herausforderungen aufgrund großer oder geringer Konkurrenz durch lokale und inländische Marken sowie die Auswirkungen der Vertriebskanäle berücksichtigt.
Wettbewerbsumfeld und Analyse der Marktanteile für künstliche Intelligenz (KI) in der Arzneimittelentdeckung im asiatisch-pazifischen Raum
Die Wettbewerbslandschaft des Marktes für künstliche Intelligenz (KI) in der Arzneimittelentdeckung im asiatisch-pazifischen Raum bietet Details nach Wettbewerbern. Die enthaltenen Details sind Unternehmensübersicht, Unternehmensfinanzen, erzielter Umsatz, Marktpotenzial, Investitionen in Forschung und Entwicklung, neue Marktinitiativen, Produktionsstandorte und -anlagen, Stärken und Schwächen des Unternehmens, Produkteinführung, Produkttestpipelines, Produktzulassungen, Patente, Produktbreite und -breite, Anwendungsdominanz, Technologie-Lebenslinienkurve. Die oben angegebenen Datenpunkte beziehen sich nur auf den Fokus des Unternehmens auf den Markt für künstliche Intelligenz (KI) in der Arzneimittelentdeckung im asiatisch-pazifischen Raum.
Zu den wichtigsten Akteuren auf dem Markt zählen unter anderem NVIDIA Corporation, IBM Corp., Atomwise Inc., Microsoft, Benevolent AI, Aria Pharmaceuticals, Inc., DEEP GENOMICS, Exscientia, Cloud, Insilico Medicine, Cyclica, NuMedii, Inc., Envisagenics, Owkin Inc., BERG LLC, Schrödinger, Inc., XtalPi Inc. und BIOAGE Inc.
SKU-
Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud
- Interaktives Datenanalyse-Dashboard
- Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
- Zugriff für Research-Analysten für Anpassungen und Abfragen
- Konkurrenzanalyse mit interaktivem Dashboard
- Aktuelle Nachrichten, Updates und Trendanalyse
- Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Inhaltsverzeichnis
1 INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATIONS
1.6 MARKETS COVERED
2 MARKET SEGMENTATION
2.1 MARKETS COVERED
2.2 GEOGRAPHICAL SCOPE
2.3 YEARS CONSIDERED FOR THE STUDY
2.4 DBMR TRIPOD DATA VALIDATION MODEL
2.5 PRIMARY INTERVIEWS WITH KEY OPINION LEADERS
2.6 MULTIVARIATE MODELLING
2.7 MARKET APPLICATION COVERAGE GRID
2.8 SOURCE LIFELINE CURVE
2.9 DBMR MARKET POSITION GRID
2.1 VENDOR SHARE ANALYSIS
2.11 SECONDARY SOURCES
2.12 ASSUMPTIONS
3 EXECUTIVE SUMMARY
4 PREMIUM INSIGHT
4.1 PESTEL ANALYSIS
4.2 PORETSR’S FIVE FORCES
5 MARKET OVERVIEW
5.1 DRIVERS
5.1.1 THE RISE IN INCIDENCE OF CHRONIC DISEASES PROPELS NEED FOR ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY
5.1.2 STRATEGIC COLLABORATIONS, PARTNERSHIPS, AND PRODUCTS LAUNCH
5.1.3 REDUCTION IN TOTAL TIME INVOLVED IN DRUG DISCOVERY PROCESS
5.1.4 ADVANCEMENT OF ARTIFICIAL INTELLIGENCE IN THE HEALTHCARE INDUSTRY
5.2 RESTRAINTS
5.2.1 HIGH COST ASSOCIATED WITH TECHNOLOGY AND TECHNICAL LIMITATIONS
5.2.2 DISADVANTAGES AND RISKS ASSOCIATED WITH AI IN DRUG DISCOVERY
5.2.3 LACK OF AVAILABLE QUALITY DATA
5.3 OPPORTUNITIES
5.3.1 RISE IN THE INVESTMENTS FOR R&D
5.3.2 RISING HEALTHCARE INFRASTRUCTURE
5.3.3 DEVELOPMENT OF NOVEL TOOLS
5.4 CHALLENGES
5.4.1 THE ASIA PACIFIC SHORTAGE OF AI TALENT
5.4.2 ETHICAL, LEGAL, AND REGULATORY ISSUES FOR AI ADOPTION IN THE PHARMACEUTICAL SCIENCES
6 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING
6.1 OVERVIEW
6.2 SOFTWARE
6.2.1 INTEGRATED
6.2.2 STANDALONE
6.3 SERVICES
7 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY
7.1 OVERVIEW
7.2 MACHINE LEARNING (ML)
7.2.1 SUPERVISED LEARNING
7.2.2 UNSUPERVISED LEARNING
7.2.3 REINFORCEMENT LEARNING
7.3 DEEP LEARNING
7.4 NATURAL LANGUAGE PROCESSING (NLP)
7.5 OTHERS
8 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET , BY DRUG TYPE
8.1 OVERVIEW
8.2 SMALL MOLECULE
8.3 LARGE MOLECULE
9 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION
9.1 OVERVIEW
9.2 NOVEL DRUG CANDIDATES
9.2.1 PREDICT BIOACTIVITY OF SMALL MOLECULE
9.2.2 IDENTIFY BIOLOGICS TARGET
9.2.3 OTHERS
9.3 DRUG OPTIMISATION AND RE-PURPOSING PRE-CLINICAL TESTING AND APPROVAL
9.4 DRUG MONITORING
9.5 AGGREGATING AND SYNTHESIZING INFORMATION
9.6 DE NOVO DRUG DESIGN
9.7 FINDING DRUG TARGETS OF AN OLD DRUG
9.8 FORMATION & QUALIFICATION OF HYPOTHESES
9.9 UNDERSTANDING DISEASE MECHANISMS
9.1 FINDING NEW DISEASE-ASSOCIATED TARGETS AND PATHWAYS
9.11 OTHERS
10 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION
10.1 OVERVIEW
10.2 IMMUNE-ONCOLOGY
10.2.1 BREAST CANCER
10.2.2 LUNG CANCER
10.2.3 COLORECTAL CANCER
10.2.4 PROSTATE CANCER
10.2.5 PANCREATIC CANCER
10.2.6 BRAIN CANCER
10.2.7 LEUKEMIA
10.2.8 OTHERS
10.3 NEURODEGENERATIVE DISEASES
10.4 CARDIOVASCULAR DISEASES
10.5 METABOLIC DISEASES
10.6 OTHERS
11 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET , BY END USE
11.1 OVERVIEW
11.2 CONTRACT RESEARCH ORGANIZATIONS
11.3 PHARMACEUTICAL & BIOTECHNOLOGY COMPANIES
11.4 RESEARCH CENTERS AND ACADEMIC INSTITUTES
11.5 OTHERS
12 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION
12.1 ASIA-PACIFIC
12.1.1 CHINA
12.1.2 JAPAN
12.1.3 SOUTH KOREA
12.1.4 INDIA
12.1.5 AUSTRALIA & NEW ZEALAND
12.1.6 SINGAPORE
12.1.7 THAILAND
12.1.8 MALAYSIA
12.1.9 INDONESIA
12.1.10 PHILIPPINES
12.1.11 REST OF ASIA-PACIFIC
13 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: COMPANY LANDSCAPE
13.1 COMPANY SHARE ANALYSIS: ASIA PACIFIC
14 SWOT ANALYSIS
15 COMPANY PROFILES
15.1 NVIDIA CORPORATION
15.1.1 COMPANY SNAPSHOT
15.1.2 REVENUE ANALYSIS
15.1.3 COMPANY SHARE ANALYSIS
15.1.4 PRODUCT PORTFOLIO
15.1.5 RECENT DEVELOPMENTS
15.2 MICROSOFT
15.2.1 COMPANY SNAPSHOT
15.2.2 REVENUE ANALYSIS
15.2.3 COMPANY SHARE ANALYSIS
15.2.4 PRODUCT PORTFOLIO
15.2.5 RECENT DEVELOPMENT
15.3 IBM CORP
15.3.1 COMPANY SNAPSHOT
15.3.2 REVENUE ANALYSIS
15.3.3 COMPANY SHARE ANALYSIS
15.3.4 PRODUCT PORTFOLIO
15.3.5 RECENT DEVELOPMENT
15.4 SCHRÖDINGER, INC.
15.4.1 COMPANY SNAPSHOT
15.4.2 REVENUE ANALYSIS
15.4.3 COMPANY SHARE ANALYSIS
15.4.4 PRODUCT PORTFOLIO
15.4.5 RECENT DEVELOPMENTS
15.5 BERG LLC
15.5.1 COMPANY SNAPSHOT
15.5.2 COMPANY SHARE ANALYSIS
15.5.3 PRODUCT PORTFOLIO
15.5.4 RECENT DEVELOPMENTS
15.6 ARDIGEN
15.6.1 COMPANY SNAPSHOT
15.6.2 PRODUCT PORTFOLIO
15.6.3 RECENT DEVELOPMENTS
15.7 EXSCIENTIA
15.7.1 COMPANY SNAPSHOT
15.7.2 REVENUE ANALYSIS
15.7.3 PRODUCT PORTFOLIO
15.7.4 RECENT DEVELOPMENTS
15.8 ARIA PHARMACEUTICALS, INC.
15.8.1 COMPANY SNAPSHOT
15.8.2 PRODUCT PORTFOLIO
15.8.3 RECENT DEVELOPMENTS
15.9 ATOMWISE INC.
15.9.1 COMPANY SNAPSHOT
15.9.2 PRODUCT PORTFOLIO
15.9.3 RECENT DEVELOPMENTS
15.1 BENEVOLENT AI
15.10.1 COMPANY SNAPSHOT
15.10.2 REVENUE ANALYSIS
15.10.3 PRODUCT PORTFOLIO
15.10.4 RECENT DEVELOPMENTS
15.11 BIOAGE INC.,
15.11.1 COMPANY SNAPSHOT
15.11.2 PRODUCT PORTFOLIO
15.11.3 RECENT DEVELOPMENTS
15.12 CLOUD
15.12.1 COMPANY SNAPSHOT
15.12.2 PRODUCT PORTFOLIO
15.12.3 RECENT DEVELOPMENT
15.13 CYCLICA
15.13.1 COMPANY SNAPSHOT
15.13.2 PRODUCT PORTFOLIO
15.13.3 RECENT DEVELOPMENTS
15.14 DEEP GENOMICS
15.14.1 COMPANY SNAPSHOT
15.14.2 PRODUCT PORTFOLIO
15.14.3 RECENT DEVELOPMENTS
15.15 ENVISAGENICS
15.15.1 COMPANY SNAPSHOT
15.15.2 PRODUCT PORTFOLIO
15.15.3 RECENT DEVELOPMENTS
15.16 INSILICO MEDICINE
15.16.1 COMPANY SNAPSHOT
15.16.2 PRODUCT PORTFOLIO
15.16.3 RECENT DEVELOPMENTS
15.17 NUMEDII, INC.
15.17.1 COMPANY SNAPSHOT
15.17.2 PRODUCT PORTFOLIO
15.17.3 RECENT DEVELOPMENT
15.18 OWKIN INC.
15.18.1 COMPANY SNAPSHOT
15.18.2 PRODUCT PORTFOLIO
15.18.3 RECENT DEVELOPMENT
15.19 XTALPI INC.
15.19.1 COMPANY SNAPSHOT
15.19.2 PRODUCT PORTFOLIO
15.19.3 RECENT DEVELOPMENTS
16 QUESTIONNAIRE
17 RELATED REPORTS
Tabellenverzeichnis
TABLE 1 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING, 2020-2029 (USD MILLION)
TABLE 2 ASIA PACIFIC SOFTWARE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 3 ASIA PACIFIC SOFTWARE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TYPE, 2020-2029 (USD MILLION)
TABLE 4 ASIA PACIFIC SERVICES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 5 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 6 ASIA PACIFIC MACHINE LEARNING (ML) IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 7 ASIA PACIFIC MACHINE LEARNING (ML) IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 8 ASIA PACIFIC DEEP LEARNING IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 9 ASIA PACIFIC NATURAL LANGUAGE PROCESSING (NLP) IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 10 ASIA PACIFIC OTHERS IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 11 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE, 2020-2029 (USD MILLION)
TABLE 12 ASIA PACIFIC SMALL MOLECULE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 13 ASIA PACIFIC LARGE MOLECULE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 14 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 15 ASIA PACIFIC NOVEL DRUG CANDIDATES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 16 ASIA PACIFIC NOVEL DRUG CANDIDATES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 17 ASIA PACIFIC DRUG OPTIMISATION AND RE-PURPOSING PRE-CLINICAL TESTING AND APPROVAL IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 18 ASIA PACIFIC DRUG MONITORING IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 19 ASIA PACIFIC AGGREGATING AND SYNTHESIZING INFORMATION IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 20 ASIA PACIFIC DE NOVO DRUG DESIGN IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 21 ASIA PACIFIC FINDING DRUG TARGETS OF AN OLD DRUG IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 22 ASIA PACIFIC FORMATION & QUALIFICATION OF HYPOTHESES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 23 ASIA PACIFIC UNDERSTANDING DISEASE MECHANISMS IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 24 ASIA PACIFIC FINDING NEW DISEASE-ASSOCIATED TARGETS AND PATHWAYS IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 25 ASIA PACIFIC OTHERS IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 26 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 27 ASIA PACIFIC IMMUNO-ONCOLOGY IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 28 ASIA PACIFIC IMMUNO-ONCOLOGY IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 29 ASIA PACIFIC NEURODEGENERATIVE DISEASES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 30 ASIA PACIFIC CARDIOVASCULAR DISEASES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 31 ASIA PACIFIC METABOLIC DISEASES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 32 ASIA PACIFIC OTHERS IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 33 GLOB ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USE, 2020-2029 (USD MILLION)
TABLE 34 ASIA PACIFIC CONTRACT RESEARCH ORGANIZATIONS IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 35 ASIA PACIFIC PHARMACEUTICAL & BIOTECHNOLOGY COMPANIES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 36 ASIA PACIFIC RESEARCH CENTRES AND ACADEMIC INSTITUTES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 37 ASIA PACIFIC OTHERS IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 38 ASIA-PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY COUNTRY, 2020-2029 (USD MILLION)
TABLE 39 ASIA-PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING, 2020-2029 (USD MILLION)
TABLE 40 ASIA-PACIFIC SOFTWARE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TYPE, 2020-2029 (USD MILLION)
TABLE 41 ASIA-PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 42 ASIA-PACIFIC MACHINE LEARNING (ML) IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 43 ASIA-PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE, 2020-2029 (USD MILLION)
TABLE 44 ASIA-PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 45 ASIA-PACIFIC NOVEL DRUG CANDIDATES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 46 ASIA-PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 47 ASIA-PACIFIC IMMUNO-ONCOLOGY IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 48 ASIA-PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USE, 2020-2029 (USD MILLION)
TABLE 49 CHINA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING, 2020-2029 (USD MILLION)
TABLE 50 CHINA SOFTWARE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TYPE, 2020-2029 (USD MILLION)
TABLE 51 CHINA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 52 CHINA MACHINE LEARNING (ML) IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 53 CHINA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE, 2020-2029 (USD MILLION)
TABLE 54 CHINA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 55 CHINA NOVEL DRUG CANDIDATES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 56 CHINA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 57 CHINA IMMUNO-ONCOLOGY IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 58 CHINA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USE, 2020-2029 (USD MILLION)
TABLE 59 JAPAN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING, 2020-2029 (USD MILLION)
TABLE 60 JAPAN SOFTWARE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TYPE, 2020-2029 (USD MILLION)
TABLE 61 JAPAN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 62 JAPAN MACHINE LEARNING (ML) IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 63 JAPAN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE, 2020-2029 (USD MILLION)
TABLE 64 JAPAN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 65 JAPAN NOVEL DRUG CANDIDATES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 66 JAPAN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 67 JAPAN IMMUNO-ONCOLOGY IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 68 JAPAN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USE, 2020-2029 (USD MILLION)
TABLE 69 SOUTH KOREA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING, 2020-2029 (USD MILLION)
TABLE 70 SOUTH KOREA SOFTWARE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TYPE, 2020-2029 (USD MILLION)
TABLE 71 SOUTH KOREA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 72 SOUTH KOREA MACHINE LEARNING (ML) IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 73 SOUTH KOREA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE, 2020-2029 (USD MILLION)
TABLE 74 SOUTH KOREA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 75 SOUTH KOREA NOVEL DRUG CANDIDATES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 76 SOUTH KOREA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 77 SOUTH KOREA IMMUNO-ONCOLOGY IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 78 SOUTH KOREA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USE, 2020-2029 (USD MILLION)
TABLE 79 INDIA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING, 2020-2029 (USD MILLION)
TABLE 80 INDIA SOFTWARE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TYPE, 2020-2029 (USD MILLION)
TABLE 81 INDIA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 82 INDIA MACHINE LEARNING (ML) IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 83 INDIA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE, 2020-2029 (USD MILLION)
TABLE 84 INDIA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 85 INDIA NOVEL DRUG CANDIDATES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 86 INDIA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 87 INDIA IMMUNO-ONCOLOGY IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 88 INDIA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USE, 2020-2029 (USD MILLION)
TABLE 89 AUSTRALIA & NEW ZEALAND ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING, 2020-2029 (USD MILLION)
TABLE 90 AUSTRALIA & NEW ZEALAND SOFTWARE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TYPE, 2020-2029 (USD MILLION)
TABLE 91 AUSTRALIA & NEW ZEALAND ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 92 AUSTRALIA & NEW ZEALAND MACHINE LEARNING (ML) IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 93 AUSTRALIA & NEW ZEALAND ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE, 2020-2029 (USD MILLION)
TABLE 94 AUSTRALIA & NEW ZEALAND ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 95 AUSTRALIA & NEW ZEALAND NOVEL DRUG CANDIDATES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 96 AUSTRALIA & NEW ZEALAND ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 97 AUSTRALIA & NEW ZEALAND IMMUNO-ONCOLOGY IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 98 AUSTRALIA & NEW ZEALAND ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USE, 2020-2029 (USD MILLION)
TABLE 99 SINGAPORE ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING, 2020-2029 (USD MILLION)
TABLE 100 SINGAPORE SOFTWARE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TYPE, 2020-2029 (USD MILLION)
TABLE 101 SINGAPORE ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 102 SINGAPORE MACHINE LEARNING (ML) IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 103 SINGAPORE ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE, 2020-2029 (USD MILLION)
TABLE 104 SINGAPORE ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 105 SINGAPORE NOVEL DRUG CANDIDATES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 106 SINGAPORE ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 107 SINGAPORE IMMUNO-ONCOLOGY IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 108 SINGAPORE AARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USE, 2020-2029 (USD MILLION)
TABLE 109 THAILAND ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING, 2020-2029 (USD MILLION)
TABLE 110 THAILAND SOFTWARE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TYPE, 2020-2029 (USD MILLION)
TABLE 111 THAILAND ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 112 THAILAND MACHINE LEARNING (ML) IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 113 THAILAND ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE, 2020-2029 (USD MILLION)
TABLE 114 THAILAND ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 115 THAILAND NOVEL DRUG CANDIDATES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 116 THAILAND ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 117 THAILAND IMMUNO-ONCOLOGY IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 118 THAILAND ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USE, 2020-2029 (USD MILLION)
TABLE 119 MALAYSIA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING, 2020-2029 (USD MILLION)
TABLE 120 MALAYSIA SOFTWARE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TYPE, 2020-2029 (USD MILLION)
TABLE 121 MALAYSIA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 122 MALAYSIA MACHINE LEARNING (ML) IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 123 MALAYSIA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE, 2020-2029 (USD MILLION)
TABLE 124 MALAYSIA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 125 MALAYSIA NOVEL DRUG CANDIDATES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 126 MALAYSIA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 127 MALAYSIA IMMUNO-ONCOLOGY IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 128 MALAYSIA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USE, 2020-2029 (USD MILLION)
TABLE 129 INDONESIA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING, 2020-2029 (USD MILLION)
TABLE 130 INDONESIA SOFTWARE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TYPE, 2020-2029 (USD MILLION)
TABLE 131 INDONESIA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 132 INDONESIA MACHINE LEARNING (ML) IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 133 INDONESIA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE, 2020-2029 (USD MILLION)
TABLE 134 INDONESIA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 135 INDONESIA NOVEL DRUG CANDIDATES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 136 INDONESIA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 137 INDONESIA IMMUNO-ONCOLOGY IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 138 INDONESIA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USE, 2020-2029 (USD MILLION)
TABLE 139 PHILIPPINES ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING, 2020-2029 (USD MILLION)
TABLE 140 PHILIPPINES SOFTWARE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TYPE, 2020-2029 (USD MILLION)
TABLE 141 PHILIPPINES ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 142 PHILIPPINES MACHINE LEARNING (ML) IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 143 PHILIPPINES ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE, 2020-2029 (USD MILLION)
TABLE 144 PHILIPPINES ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 145 PHILIPPINES NOVEL DRUG CANDIDATES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 146 PHILIPPINES ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 147 PHILIPPINES IMMUNO-ONCOLOGY IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 148 PHILIPPINES ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USE, 2020-2029 (USD MILLION)
TABLE 149 REST OF ASIA-PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING, 2020-2029 (USD MILLION)
Abbildungsverzeichnis
FIGURE 1 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: SEGMENTATION
FIGURE 2 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: DATA TRIANGULATION
FIGURE 3 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: DROC ANALYSIS
FIGURE 4 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: ASIA PACIFIC VS REGIONAL MARKET ANALYSIS
FIGURE 5 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: COMPANY RESEARCH ANALYSIS
FIGURE 6 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: INTERVIEW DEMOGRAPHICS
FIGURE 7 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: MARKET APPLICATION COVERAGE GRID
FIGURE 8 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: DBMR MARKET POSITION GRID
FIGURE 9 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: VENDOR SHARE ANALYSIS
FIGURE 10 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: SEGMENTATION
FIGURE 11 THE GROWING NEED TO CURB DRUG DISCOVERY COSTS AND REDUCE TIME INVOLVED IN THE DRUG DEVELOPMENT PROCESS, THE RISING ADOPTION OF CLOUD-BASED APPLICATIONS AND SERVICES, AND THE IMPENDING PATENT EXPIRY OF BLOCKBUSTER DRUGS ARE EXPECTED TO DRIVE THE GROWTH OF THE ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET IN THE FORECAST PERIOD OF 2022 TO 2029
FIGURE 12 SOFTWARE IS EXPECTED TO ACCOUNT FOR THE LARGEST SHARE OF THE ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET IN 2022 AND 2029
FIGURE 13 DRIVERS, RESTRAINTS, OPPORTUNITIES, AND CHALLENGES OF THE ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET
FIGURE 14 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY OFFERING, 2021
FIGURE 15 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY OFFERING, 2022-2029 (USD MILLION)
FIGURE 16 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY OFFERING, CAGR (2022-2029)
FIGURE 17 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY OFFERING, LIFELINE CURVE
FIGURE 18 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY TECHNOLOGY, 2021
FIGURE 19 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY TECHNOLOGY, 2022-2029 (USD MILLION)
FIGURE 20 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY TECHNOLOGY, CAGR (2022-2029)
FIGURE 21 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY TECHNOLOGY, LIFELINE CURVE
FIGURE 22 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET : BY DRUG TYPE, 2021
FIGURE 23 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET : BY DRUG TYPE, 2022-2029 (USD MILLION)
FIGURE 24 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET : BY DRUG TYPE, CAGR (2022-2029)
FIGURE 25 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET : BY DRUG TYPE, LIFELINE CURVE
FIGURE 26 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY APPLICATION, 2021
FIGURE 27 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY APPLICATION, 2020-2029 (USD MILLION)
FIGURE 28 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY APPLICATION, CAGR (2022-2029)
FIGURE 29 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY APPLICATION, LIFELINE CURVE
FIGURE 30 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY INDICATION, 2021
FIGURE 31 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY INDICATION, 2020-2029 (USD MILLION)
FIGURE 32 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY INDICATION, CAGR (2022-2029)
FIGURE 33 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY INDICATION, LIFELINE CURVE
FIGURE 34 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY END USE, 2021
FIGURE 35 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY END USE, 2022-2029 (USD MILLION)
FIGURE 36 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET : BY END USE, CAGR (2022-2029)
FIGURE 37 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET : BY END USE, LIFELINE CURVE
FIGURE 38 ASIA-PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: SNAPSHOT (2021)
FIGURE 39 ASIA-PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY COUNTRY (2021)
FIGURE 40 ASIA-PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY COUNTRY (2022 & 2029)
FIGURE 41 ASIA-PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY COUNTRY (2021 & 2029)
FIGURE 42 ASIA-PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY OFFERING (2022-2029)
FIGURE 43 ASIA PACIFIC ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: COMPANY SHARE 2021 (%)
Forschungsmethodik
Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.
Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.
Anpassung möglich
Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.