Asien-Pazifik-Marktgröße, Marktanteil und Trendanalysebericht zur Geldwäschebekämpfung – Branchenüberblick und Prognose bis 2031

Inhaltsverzeichnis anfordernInhaltsverzeichnis anfordern Mit Analyst sprechen Mit Analyst sprechen Jetzt kaufenJetzt kaufen Vor dem Kauf anfragen Vorher anfragen Kostenloser Beispielbericht Kostenloser Beispielbericht

Asien-Pazifik-Marktgröße, Marktanteil und Trendanalysebericht zur Geldwäschebekämpfung – Branchenüberblick und Prognose bis 2031

  • Automotive
  • Publish Reports
  • Sep 2024
  • Asia-Pacific
  • 350 Seiten
  • Anzahl der Tabellen: 198
  • Anzahl der Abbildungen: 30

Asia Pacific Anti Money Laundering Market

Marktgröße in Milliarden USD

CAGR :  % Diagram

Diagramm Prognosezeitraum
2024 –2031
Diagramm Marktgröße (Basisjahr)
USD 803.54 Million
Diagramm Marktgröße (Prognosejahr)
USD 2,330.37 Million
Diagramm CAGR
%
Diagramm Wichtige Marktteilnehmer
  • Dummy1
  • Dummy2
  • Dummy3
  • Dummy4
  • Dummy5

>Marktsegmentierung zur Geldwäschebekämpfung im asiatisch-pazifischen Raum nach Angebot (Lösungen und Dienste), Funktion (Compliance-Management, Kundenidentitätsmanagement, Transaktionsüberwachung, Berichterstattung über Währungstransaktionen und andere), Bereitstellung (Cloud und vor Ort), Unternehmensgröße (Großunternehmen und kleine und mittlere Unternehmen), Endnutzung ( Banken und Finanzinstitute, Versicherungsanbieter, Regierung, Gaming und Glücksspiel und andere) – Branchentrends und Prognose bis 2031.

Markt zur Geldwäschebekämpfung im asiatisch-pazifischen Raum

Marktanalyse zur Geldwäschebekämpfung im asiatisch-pazifischen Raum

Der Markt für Geldwäschebekämpfung im asiatisch-pazifischen Raum hat aufgrund der gestiegenen Nachfrage nach Transaktionsüberwachungssystemen zur Bewertung von Mustern der Finanzkriminalität ein Wachstum erlebt. Dies kann in verschiedenen anderen Anwendungen zur Aufdeckung von Finanzkriminalität wie Terrorismusfinanzierung, Betrug, Drogenhandel, Bestechung, Korruption und Identitätsdiebstahl eingesetzt werden, die die Wirtschaft des Landes erheblich beeinträchtigen können. In jüngster Zeit erfreuen sich AML-Lösungen bei verschiedenen Finanzinstituten wie Versicherungsunternehmen, Geschäftsbanken, Internetbanken, Privatkundenbanken, Versicherungsunternehmen und Hypothekenbanken zunehmender Beliebtheit. Darüber hinaus erfreuen sie sich in verschiedenen Branchen wie der Spiel- und Glücksspielbranche, der Immobilienbranche, dem Devisenhandel (MSB), der Zahlungsbranche, der Investmentbranche und Regierungsbehörden auf der ganzen Welt zunehmender Beliebtheit.

Marktgröße für Geldwäschebekämpfung im asiatisch-pazifischen Raum

Laut einer Analyse von Data Bridge Market Research wird der Markt für Geldwäschebekämpfung im asiatisch-pazifischen Raum voraussichtlich von 803,54 Millionen US-Dollar im Jahr 2023 auf 2.330,37 Millionen US-Dollar im Jahr 2031 anwachsen und im Prognosezeitraum zwischen 2024 und 2031 eine durchschnittliche jährliche Wachstumsrate (CAGR) von 14,4 % aufweisen.  

Markttrends zur Geldwäschebekämpfung im asiatisch-pazifischen Raum

„Verstärkte Bemühungen zur Aufdeckung von Finanzkriminalität“

Die verstärkten Bemühungen zur Aufdeckung von Finanzkriminalität haben die Kontrolle der Maßnahmen zur Bekämpfung der Geldwäsche (AML) intensiviert, wobei der Schwerpunkt auf der Verbesserung der Compliance und der Überwachung von Systemtrends liegt. Finanzinstitute implementieren strengere Verfahren, um verdächtige Transaktionen und Muster zu identifizieren, die auf Geldwäsche hindeuten. Zu diesen Maßnahmen gehören die Stärkung der internen Kontrollen, die Verbesserung der Transaktionsmeldepraktiken und die Verbesserung der Zusammenarbeit mit Aufsichtsbehörden. Das Streben nach mehr Transparenz und Rechenschaftspflicht zielt darauf ab, Netzwerke der Finanzkriminalität zu zerschlagen und illegale Finanzströme zu reduzieren. Durch die Einführung umfassender AML-Rahmenwerke versuchen Organisationen, Risiken zu mindern und die Integrität des Finanzsystems zu schützen. Dieser proaktive Ansatz spiegelt ein umfassenderes Engagement zur Bekämpfung von Finanzkriminalität und zur Einhaltung gesetzlicher Vorschriften wider.

Umfang des Berichts und Marktsegmentierung zur Geldwäschebekämpfung

Berichtsmetrik

Einblicke in den Markt für Geldwäschebekämpfung im asiatisch-pazifischen Raum

Abgedeckte Segmente

  • Nach Angebot: Lösungen und Dienstleistungen 
  • Nach Funktion: Compliance-Management, Kundenidentitätsmanagement, Transaktionsüberwachung , Währungstransaktionsberichterstattung und andere
  • Nach Bereitstellung: Cloud und On-Premise
  • Unternehmensgröße: Große Unternehmen, kleine und mittlere Unternehmen
  • Endverbraucher: Banken und Finanzinstitute, Versicherungsanbieter, Regierung, Gaming und Glücksspiel und andere

Abgedeckte Länder

China, Japan, Indien, Südkorea, Australien, Singapur, Malaysia, Thailand, Indonesien, Philippinen, Taiwan, Vietnam und Rest des asiatisch-pazifischen Raums

Wichtige Marktteilnehmer

BAE Systems, NICE, SAP SE, Open Text Corporation, ACI Worldwide, Accenture, Oracle, Cognizant, Intel Corporation und IBM um nur einige zu nennen.

Marktchancen

  • Zunehmende Nutzung von Advanced Analytics in der Geldwäschebekämpfung
  • Integration von KI und ML bei der Entwicklung von AML-Lösungen

Mehrwertdaten

Zusätzlich zu den Markteinblicken wie Marktwert, Wachstumsrate, Marktsegmenten, geografischer Abdeckung, Marktteilnehmern und Marktszenario enthält der vom Data Bridge Market Research-Team zusammengestellte Marktbericht eine eingehende Expertenanalyse, Import-/Exportanalyse, Preisanalyse, Produktionsverbrauchsanalyse und PESTLE-Analyse.

Definition des Marktes zur Geldwäschebekämpfung im asiatisch-pazifischen Raum

Lösungen zur Geldwäschebekämpfung (AML) werden eingesetzt, um Geldwäsche, Terrorismusfinanzierung, Betrug, elektronische Kriminalität, Bestechung und Korruption, Steuerhinterziehung, Unterschlagung, Informationssicherheit, illegale grenzüberschreitende Transaktionen und andere Fälle zu erkennen und die Institutionen davor zu warnen, da diese die Wirtschaft eines Landes stark beeinträchtigen und seinen Ruf schädigen können. AML ist ein Begriff, der im Allgemeinen zur Beschreibung des Kampfes gegen Geldwäsche und Finanzkriminalität verwendet wird. Lösungen zur Geldwäschebekämpfung (AML) entsprechen verschiedenen Richtlinien, Gesetzen und Vorschriften, die zur Verhinderung von Finanzkriminalität beitragen . Diese Richtlinien, Richtlinien und Gesetze werden von lokalen Regulierungsbehörden weltweit festgelegt, um die Funktionsweise von AML-Lösungen zu stärken.

Dynamik des Geldwäschebekämpfungsmarktes im asiatisch-pazifischen Raum

In diesem Abschnitt geht es um das Verständnis der Markttreiber, Vorteile, Chancen, Einschränkungen und Herausforderungen. All dies wird im Folgenden ausführlich erläutert:

Treiber

  • Verstärkte Bemühungen zur Aufdeckung von Finanzkriminalität

Durch verstärkte Bemühungen zur Aufdeckung von Finanzkriminalität werden Maßnahmen zur Geldwäschebekämpfung (AML) intensiviert, wobei der Schwerpunkt auf der Verbesserung von Compliance- und Überwachungssystemen liegt. Finanzinstitute implementieren strengere Verfahren, um verdächtige Transaktionen und Muster zu identifizieren, die auf Geldwäsche hindeuten. Zu diesen Maßnahmen gehören die Stärkung der internen Kontrollen, die Verbesserung der Transaktionsmeldepraktiken und die Verbesserung der Zusammenarbeit mit Aufsichtsbehörden. Das Streben nach mehr Transparenz und Rechenschaftspflicht zielt darauf ab, Netzwerke von Finanzkriminellen zu zerschlagen und illegale Finanzströme zu reduzieren. Durch die Einführung umfassender AML-Rahmenwerke versuchen Organisationen, Risiken zu mindern und die Integrität des Finanzsystems zu schützen.

Zum Beispiel,

  • Im August 2024 hat ThetaRay, ein israelischer Anbieter von KI-gesteuerter Transaktionsüberwachung, laut dem Blog Informa PLC das belgische Fintech-Unternehmen Screena übernommen. Es bietet eine KI-gestützte AML-Screening-Lösung für Finanzinstitute (FIs). Diese Übernahme zielt darauf ab, ThetaRays Fähigkeit zu verbessern, einen umfassenden Überblick über Transaktions- und Kundenscreening-Risiken zu bieten. Sie unterstützt verstärkte Bemühungen zur Aufdeckung von Finanzkriminalität, einschließlich illegaler Aktivitäten im Zusammenhang mit Glücksspiel, und stärkt ThetaRays cloudbasierte, durchgängige Plattform zur Aufdeckung von Finanzkriminalität
  • Zunehmend strengere Vorschriften und Compliance im Zusammenhang mit der Bekämpfung von Geldwäsche

Ein Anti-Geldwäsche-Compliance-Programm ist eine Reihe von Vorschriften oder Regeln, die ein Finanzinstitut befolgen muss, um Geldwäsche und Terrorismusfinanzierung zu verhindern und aufzudecken. Finanzkriminalität gegen Finanzinstitute wie Banken und Kreditgenossenschaften hat in letzter Zeit zugenommen. Im Jahr 2019 gab es einen Anstieg der Fälle von Finanzbetrug um etwa 50 bis 60 % gegenüber 2018, und es wird erwartet, dass dieser Anstieg in den kommenden Jahren weiter zunimmt. Die Verluste, die den Banken in ganz Europa entstehen, sind ziemlich beträchtlich.

Zum Beispiel,

  • Im Juli 2024 weiteten die Regierungen laut dem von The Good Returns veröffentlichten Artikel die Vorschriften zur Bekämpfung der Geldwäsche (AML) über traditionelle Finanzinstitute hinaus auf nichtfinanzielle Sektoren wie Immobilien und virtuelle Vermögenswerte aus. Diese Ausweitung zielte darauf ab, Schwachstellen in diesen Sektoren aufgrund ihrer Transaktionen mit hohem Wert und ihrer Intransparenz zu beheben. Außerdem wurden strengere Strafen für Verstöße eingeführt, um die Compliance-Kultur zu stärken und das Risiko finanzieller Ausbeutung zu verringern. Für Glücksspielunternehmen fördern diese verschärften Vorschriften einen robusteren Rahmen für die Bekämpfung der Geldwäsche, fördern die Integrität und verringern rechtliche Risiken

Gelegenheiten

  • Zunehmende Nutzung fortschrittlicher Analysen im Bereich Geldwäschebekämpfung

Advanced Analytics ist das autonome oder halbautonome System, das Daten oder Inhalte mithilfe ausgefeilter Techniken und Tools analysiert, was sich deutlich von herkömmlicher Business Intelligence unterscheidet. Diese Analysen ermöglichen eine tiefere Analyse, anhand derer das System Vorhersagen trifft und Empfehlungen generiert. Advanced Analytics in AML-Lösungen kann eine wichtige Rolle bei der Erkennung von Geldwäsche, Finanzkriminalität, Identitätsdiebstahl und grenzüberschreitenden Transaktionen spielen. Darüber hinaus kann Advanced Analytics eine wichtige Rolle bei der erweiterten Transaktionsüberwachung spielen.

Nach Angaben des Büros der Vereinten Nationen für Drogen- und Verbrechensbekämpfung (UNODC) werden jährlich 2 Billionen US-Dollar illegales Geld ausgegeben. Eine weitere 2018 von der Baseler Anti-Geldwäsche-Agentur (AML) durchgeführte Umfrage ergab, dass 64 % der Länder in der Rangliste von 2018 (83/129) einen Risikowert von 5,0 oder höher aufweisen und grob als Länder mit einem erheblichen Risiko für Geldwäsche und Terrorismusfinanzierung eingestuft werden können.

Zum Beispiel,

  • Im Mai 2024 brachte das zu Pine Labs gehörende Unternehmen Setu laut einem von NDTV Profit veröffentlichten Artikel Indiens erste Large Language Model (LLM)-Anwendung auf den Markt, die speziell auf den BFSI-Sektor zugeschnitten ist. Dieses LLM, das anhand umfangreicher Datensätze trainiert wurde, kann Text erkennen und generieren. Die Einführung dieses fortschrittlichen Analysetools zielt darauf ab, die Bemühungen zur Bekämpfung von Geldwäsche (AML) durch die Verbesserung der Textverarbeitungs- und Analysefunktionen in Finanzdienstleistungen zu verbessern. Für Setu positioniert sich dieser Schritt als Vorreiter bei der Integration modernster KI in den BFSI-Sektor und bietet fortschrittliche Lösungen für Compliance und Risikomanagement.
  • Integration von KI und ML bei der Entwicklung von AML-Lösungen

Geldwäsche ist zu einem sehr wichtigen Finanzproblem geworden, das die Finanzbehörden zu stoppen versuchen. Der Umfrage zufolge wird Geldwäsche auf 2 bis 5 % des europäischen BIP geschätzt, d. h. es wird ein Nettovermögen von 2 Billionen USD gewaschen. Es gibt noch zahlreiche weitere Probleme, wie etwa Identitätsdiebstahl und grenzüberschreitende Transaktionen.

Laut einer Umfrage wurden 2020 1,4 Millionen Beschwerden über Fälle von Identitätsdiebstahl registriert. Im Jahr 2020 wurden grenzüberschreitende Transaktionen in ganz Europa auf rund 23,21 Billionen USD geschätzt. Alle Finanzverbrechen geschehen aufgrund schwacher AML-Lösungen und der Zurückhaltung, die von den Regulierungsbehörden festgelegten Richtlinien einzuhalten. Laut der Untersuchung von Fenergo belegten Regulierungsbehörden/Behörden Banken 2019 mit Bußgeldern in Höhe von fast rekordverdächtigen 10 Milliarden USD. Es wurde auch darauf hingewiesen, dass 60,5 % der Strafen von Banken verhängt wurden, die gegen Vorschriften zur Geldwäschebekämpfung verstoßen hatten .

Zum Beispiel,

  • Im März kündigte ACI Worldwide, Inc. die Einführung des ACI Fraud Scoring für Finanzinstitute an. Dabei handelt es sich um eine Plattform, die maschinelles Lernen der nächsten Generation ermöglicht. Mit dieser Einführung kann das Unternehmen sein Lösungsportfolio für seinen Kundenstamm erweitern. Diese Lösung hilft Finanzinstituten, ihre Zahlungsserver zu schützen

Einschränkungen/Herausforderungen

  • Datenschutzbedenken bei der Überwachung von Kundendaten

Der Anstieg von Online-Glücksspielplattformen hat die Datenschutzbedenken hinsichtlich der Überwachung von Kundendaten verstärkt. Da die Betreiber fortschrittliche Maßnahmen zur Bekämpfung der Geldwäsche (AML) implementieren, sammeln und analysieren sie umfangreiche persönliche Informationen, um verdächtige Aktivitäten zu erkennen. Diese Überprüfung wirft erhebliche Datenschutzprobleme auf, da die sensiblen Daten der Benutzer zunehmend einer detaillierten Verfolgung und Überprüfung unterzogen werden. Die Balance zwischen effektiver Betrugsprävention und robustem Datenschutz ist von entscheidender Bedeutung, da eine übermäßige Überwachung zu Datenschutzverletzungen führen und das Vertrauen der Kunden untergraben kann.

Zum Beispiel,

  • Laut einem von Mondaq Ltd. veröffentlichten Artikel führte Indiens Digital Personal Data Protection Act 2023 im Oktober 2023 neue Datenschutzbestimmungen ein, die sich auf die Online-Gaming-Branche auswirken. Das Gesetz betonte strengere Datenschutzmaßnahmen und verpflichtete Gaming-Plattformen, eine ausdrückliche Zustimmung zur Datenverarbeitung sicherzustellen, Rechte auf Datenzugriff und -korrektur zu gewähren und robuste Sicherheitspraktiken durchzusetzen. Die Vorschriften gingen auch auf Bedenken im Zusammenhang mit gezieltem Marketing ein, insbesondere gegenüber Minderjährigen, und legten höhere Compliance-Standards für Plattformen fest, die große Mengen an Benutzerdaten verarbeiten.

Der Einsatz von AML-Software ist teuer

Laut einer Umfrage des Government Accountability Office (GAO) gaben britische Banken 2018 zwischen 0,4 % und 2,4 % ihrer gesamten Betriebsausgaben für Software zur Geldwäschebekämpfung aus. Die befragten Banken gaben durchschnittlich 15 USD pro neuem Konto für Due-Diligence-Anforderungen aus, obwohl die tatsächlichen Kosten je nach Art der Bank zwischen 5 und 44 USD lagen. Es wurde festgestellt, dass die Banken am meisten für CDD (29 %) und Berichtskosten (durchschnittlich 28 %) ausgeben. Im Vergleich dazu entfielen 18 % auf Schulungen, Tests, interne Kontrollen, Software und Kosten Dritter, die durchschnittlich 17 % der AML-Lösungen ausmachten. In Europa ergab eine 2019 von LexisNexis Risk Solution durchgeführte Umfrage, dass die tatsächlichen Kosten für Software zur Geldwäschebekämpfung (AML) in europäischen Ländern sehr hoch sind, da die Nachfrage nach dem Produkt groß ist.

Zum Beispiel,

  • Im September 2023 wurde HSBC laut dem von The Investopedia veröffentlichten Artikel mit einer Geldstrafe von 1,9 Milliarden US-Dollar belegt, weil es bei seinen Kontrollen zur Bekämpfung der Geldwäsche (AML) schwere Versäumnisse begangen hatte, insbesondere wegen Geldwäsche für mexikanische Drogenkartelle. Der Skandal zeigte Schwächen in den Compliance-Mechanismen von HSBC auf und führte zur Verhängung zusätzlicher zivilrechtlicher Strafen in Höhe von 665 Millionen US-Dollar. Dieser Fall unterstreicht die hohen Kosten für den Einsatz wirksamer AML-Software und Compliance-Maßnahmen im Bankwesen. Investitionen in fortschrittliche AML-Lösungen helfen, kostspielige Strafen zu vermeiden und die Einhaltung gesetzlicher Vorschriften aufrechtzuerhalten, was Finanzinstituten zugutekommt, da sie rechtliche Risiken reduzieren und die Betriebsintegrität verbessern.

Umfang des Geldwäschebekämpfungsmarktes im asiatisch-pazifischen Raum

Der Markt für Geldwäschebekämpfung im asiatisch-pazifischen Raum ist auf der Grundlage von Angebot, Funktion, Einsatz, Unternehmensgröße und Endverbrauch in fünf wichtige Segmente unterteilt. Das Wachstum dieser Segmente hilft Ihnen bei der Analyse schwacher Wachstumssegmente in den Branchen und bietet den Benutzern einen wertvollen Marktüberblick und Markteinblicke, die ihnen bei der strategischen Entscheidungsfindung zur Identifizierung der wichtigsten Marktanwendungen helfen.

Durch das Angebot

  • Lösung
    • KYC/CDD und Beobachtungsliste
    • Transaktions-Screening und -Überwachung
    • Fallmanagement
    • Regulatorisches Reporting
  • Dienstleistungen
    • Typ
      • Professioneller Service
      • Verwalteter Dienst
  • Dienstleistungen
    • Typ
      • Integration
      • Support und Wartung
      • Training und Beratung

Nach Funktion

  • Aufsichtliches Compliance-Management
  • Meldung von Währungstransaktionen
  • Kundenidentitätsverwaltung
  • Transaktionsüberwachung

Nach Bereitstellung

  • Wolke
  • Vor Ort

Nach Unternehmensgröße

  • Große Unternehmen
  • Kleine und mittlere Unternehmen

Nach Endverwendung

  • Banken und Finanzinstitute
  • Versicherer
  • Gaming & Glücksspiel
    • Glücksspieltyp
      • Kasino
        • Typ
          • Live-Casinos
          • Poker
          • Blackjack
          • Baccara
          • Spielautomaten
          • Sonstiges
    • Anwendung
      • Live-Unterhaltung/Online
        • Typ
          • Hotels
          • Mehrere Speisemöglichkeiten
          • Sonstiges
      • Offline/landbasiert
        • Typ
          • Mobile
          • Desktop
      • Sportwetten
        • Typ
          • Fußball
          • E-Sport
          • Pferderennen
          • Sonstiges
      • Lotterie
      • Bingo
      • Gewinnspiele/Pools
  • Regierung
  • Sonstiges

Regionale Analyse des Marktes zur Geldwäschebekämpfung im asiatisch-pazifischen Raum

Der Markt zur Bekämpfung der Geldwäsche im asiatisch-pazifischen Raum ist auf der Grundlage von Angebot, Funktion, Einsatz, Unternehmensgröße und Endnutzung in fünf wichtige Segmente unterteilt. 

Die im Marktbericht zur Geldwäschebekämpfung im asiatisch-pazifischen Raum abgedeckten Länder sind China, Japan, Indien, Südkorea, Australien, Singapur, Malaysia, Thailand, Indonesien, die Philippinen, Taiwan, Vietnam und der Rest des asiatisch-pazifischen Raums. 

Aufgrund der Zunahme von Online-Glücksspielplattformen wird China voraussichtlich das dominierende Land in der Region sein und das am schnellsten wachsende Land.

Der Länderabschnitt des Berichts enthält auch individuelle marktbeeinflussende Faktoren und Änderungen der Marktregulierung, die die aktuellen und zukünftigen Trends des Marktes beeinflussen. Datenpunkte wie Downstream- und Upstream-Wertschöpfungskettenanalysen, technische Trends und Porters Fünf-Kräfte-Analyse sowie Fallstudien sind einige der Anhaltspunkte, die zur Prognose des Marktszenarios für einzelne Länder verwendet werden. Bei der Bereitstellung von Prognoseanalysen der Länderdaten werden auch die Präsenz und Verfügbarkeit von Marken und ihre Herausforderungen aufgrund großer oder geringer Konkurrenz durch lokale und inländische Marken sowie die Auswirkungen inländischer Zölle und Handelsrouten berücksichtigt.  

Marktanteile im Bereich Geldwäschebekämpfung im asiatisch-pazifischen Raum

Die Wettbewerbslandschaft des Marktes zur Geldwäschebekämpfung im asiatisch-pazifischen Raum liefert Einzelheiten zum Wettbewerber. Zu den enthaltenen Einzelheiten gehören Unternehmensübersicht, Unternehmensfinanzen, erzielter Umsatz, Marktpotenzial, Investitionen in Forschung und Entwicklung, neue Marktinitiativen, Produktionsstandorte und -anlagen, Produktionskapazitäten, Stärken und Schwächen des Unternehmens, Produkteinführung, Produktbreite und -umfang, Anwendungsdominanz. Die oben angegebenen Datenpunkte beziehen sich nur auf den Schwerpunkt der Unternehmen.

Die im asiatisch-pazifischen Raum tätigen Marktführer im Bereich der Geldwäschebekämpfung sind:

  • NIZZA (Israel)
  • IBM (USA)
  • sanktionen.io (USA)
  • Intel Corporation (USA)
  • Oracle (USA)
  • SAP SE (Deutschland)
  • Accenture (USA)
  • Experian Informationslösung
  • Inc. (Irland)
  • Open Text Corporation (Kanada)
  • BAE Systems (Großbritannien)
  • SAS Institute Inc (USA)
  • ACI Worldwide (USA)
  • Cognizant (USA)
  • Trulioo (Kanada)
  • Temenos Headquarters SA (Schweiz)
  • WorkFusion, Inc. (USA)
  • Vixio Regulatory Intelligence (England)

 Neueste Entwicklungen auf dem Markt für Geldwäschebekämpfung 

  • Im September 2023 gab IBM bekannt, dass sein Payments Center dem Swift-Partnerprogramm beigetreten ist, wodurch neue Möglichkeiten zur Zusammenarbeit mit über 11.000 Swift-Mitgliedern weltweit geschaffen wurden. Diese Partnerschaft ermöglichte es IBM, verbesserte Zahlungslösungen und eine durchgängige Cloud-basierte Swift-Konnektivität anzubieten, wodurch die Notwendigkeit für Kunden, Swift-Hardware und -Software zu verwalten, reduziert wurde. Die Zusammenarbeit half Finanzinstituten, Zahlungsplattformen zu modernisieren, auf KI-Technologien zuzugreifen und die Effizienz ohne hohe Entwicklungs- und Compliance-Kosten zu verbessern
  • Im April 2024 stellte Oracle den Financial Services Compliance Agent vor, einen KI-gestützten Cloud-Dienst, der Banken dabei helfen soll, Risiken im Zusammenhang mit der Geldwäschebekämpfung (AML) zu mindern. Mit diesem Dienst können Banken kostengünstige Szenariotests durchführen, um Kontrollen anzupassen, verdächtige Transaktionen zu identifizieren und die Compliance zu verbessern. Darüber hinaus hilft er Banken dabei, Transaktionsüberwachungssysteme zu bewerten und zu optimieren, neue Produktrisiken zu bewerten und Hochrisikotypologien proaktiv anzugehen. Diese Lösung zielt darauf ab, die Compliance-Kosten zu senken und die Wirksamkeit von AML-Programmen zu verbessern
  • Im Januar stellte Oracle seine umfassenden Cloud-Lösungen für Banken über Oracle Financial Services vor. Das Unternehmen betonte, dass Banken zunehmend Cloud-Dienste nutzen, die durch Fortschritte in den Bereichen KI und ML vorangetrieben werden. Oracle bietet eine vollständige Suite von Fintech-Lösungen, die Cloud-fähig, skalierbar und sicher sind und Banken eine Lösung aus einer Hand bieten, ohne dass mehrere Fintech-Partnerschaften erforderlich sind. Die Plattform von Oracle unterstützt über 3.000 Mikrodienste und offene APIs und hilft Banken, von Altsystemen umzusteigen und wettbewerbsfähig zu bleiben.
  • Im September kündigten Oracle und Quantifind eine strategische Zusammenarbeit zur Verbesserung der Prozesse zur Bekämpfung der Geldwäsche (AML) an. Quantifinds SaaS-Lösungen für Ermittlungen, Kundensorgfaltspflichten und Warnmeldungsmanagement wurden in die Financial Crime and Compliance Management-Plattform von Oracle integriert. Ziel dieser Partnerschaft war es, die Effizienz der Geldwäschebekämpfung um bis zu 30 % zu steigern und Arbeitsabläufe mit fortschrittlicher KI und maschinellem Lernen zu optimieren. Durch die Integration konnten Oracle-Kunden auf umfassende Daten zugreifen und ihre AML-Compliance-Funktionen über eine einheitliche Plattform verbessern.


SKU-

Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud

  • Interaktives Datenanalyse-Dashboard
  • Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
  • Zugriff für Research-Analysten für Anpassungen und Abfragen
  • Konkurrenzanalyse mit interaktivem Dashboard
  • Aktuelle Nachrichten, Updates und Trendanalyse
  • Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Demo anfordern

Inhaltsverzeichnis

1 INTRODUCTION

1.1 OBJECTIVES OF THE STUDY

1.2 MARKET DEFINITION

1.3 OVERVIEW OF ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET

1.4 CURRENCY AND PRICING

1.5 LIMITATIONS

1.6 MARKETS COVERED

2 MARKET SEGMENTATION

2.1 MARKETS COVERED

2.2 GEOGRAPHICAL SCOPE

2.3 YEARS CONSIDERED FOR THE STUDY

2.4 DBMR TRIPOD DATA VALIDATION MODEL

2.5 PRIMARY INTERVIEWS WITH KEY OPINION LEADERS

2.6 DBMR MARKET POSITION GRID

2.7 VENDOR SHARE ANALYSIS

2.8 MULTIVARIATE MODELING

2.9 OFFERING TIMELINE CURVE

2.1 MARKET END USE COVERAGE GRID

2.11 SECONDARY SOURCES

2.12 ASSUMPTIONS

3 EXECUTIVE SUMMARY

4 PREMIUM INSIGHTS

4.1 PORTER’S FIVE FORCES

4.2 USE CASE ANALYSIS

4.3 REGULATIONS ON COUNTRY LEVEL

5 MARKET OVERVIEW

5.1 DRIVERS

5.1.1 INCREASED FINANCIAL CRIMES DETECTION EFFORTS

5.1.2 INCREASING STRINGENT REGULATIONS AND COMPLIANCE RELATED TO AML

5.1.3 GROWING DEMAND FOR AML SOFTWARE’S

5.1.4 RISE IN ONLINE GAMBLING PLATFORMS

5.2 RESTRAINTS

5.2.1 PRIVACY CONCERNS IN CUSTOMER DATA MONITORING

5.2.2 DEPLOYING AML SOFTWARE IS EXPENSIVE

5.3 OPPORTUNITIES

5.3.1 INCREASING ADOPTION OF ADVANCED ANALYTICS IN AML

5.3.2 INTEGRATION OF AI AND ML IN DEVELOPING AML SOLUTIONS

5.4 CHALLENGES

5.4.1 EVOLVING MONEY LAUNDERING TECHNIQUES

5.4.2 DIFFICULTY IN MONITORING DECENTRALIZED FINANCE SYSTEMS

6 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY OFFERING

6.1 OVERVIEW

6.2 SOLUTION

6.2.1 SOLUTION, BY TYPE

6.2.2 KYC/CDD AND WATCHLIST

6.2.3 CASE MANAGEMENT

6.2.4 REGULATORY REPORTING

6.2.5 TRANSACTION SCREENING AND MONITORING

6.2.6 RISK-BASED APPROACH

6.2.7 OTHERS

6.3 SERVICES

6.3.1 SERVICES, BY TYPE

6.3.2 PROFESSIONAL SERVICES

6.3.3 PROFESSIONAL SERVICES, BY TYPE

6.3.3.1 INTEGRATION

6.3.3.2 SUPPORT AND MAINTENANCE

6.3.3.3 TRAINING AND CONSULTING

6.3.4 MANAGED SERVICES

7 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY FUNCTION

7.1 OVERVIEW

7.2 COMPLIANCE MANAGEMENT

7.3 CUSTOMER IDENTITY MANAGEMENT

7.4 TRANSACTION MONITORING

7.5 CURRENCY TRANSACTION REPORTING

7.6 OTHERS

8 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY DEPLOYMENT

8.1 OVERVIEW

8.2 CLOUD

8.3 ON-PREMISE

9 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY ENTERPRISE SIZE

9.1 OVERVIEW

9.2 LARGE ENTERPRISES

9.3 SMALL & MEDIUM ENTERPRISES

10 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY END USE

10.1 OVERVIEW

10.2 BANKS & FINANCIAL INSTITUTION

10.3 INSURANCE PROVIDERS

10.4 GOVERNMENT

10.5 GAMING & GAMBLING

10.5.1 GAMING & GAMBLING, BY GAMBLING TYPE

10.5.2 CASINO

10.5.3 CASINO, BY TYPE

10.5.3.1 LIVE CASINOS

10.5.3.2 POKER

10.5.3.3 BLACKJACK

10.5.3.4 BACCARAT

10.5.3.5 SLOTS

10.5.3.6 OTHERS

10.5.4 SPORTS BETTING

10.5.5 SPORTS BETTING, BY TYPE

10.5.5.1 FOOTBALL

10.5.5.2 E-SPORTS

10.5.5.3 HORSE RACING

10.5.5.4 OTHERS

10.5.6 LOTTERY

10.5.7 BINGO

10.5.8 RAFFLES/POOLS

10.5.9 GAMING & GAMBLING, BY APPLICATION

10.5.10 LIVE ENTERTAINMENT/ONLINE

10.5.11 LIVE ENTERTAINMENT/ONLINE, BY TYPE

10.5.11.1 HOTELS

10.5.11.2 MULTIPLE DINING OPTIONS

10.5.11.3 OTHERS

10.5.12 OFFLINE/LAND BASED

10.5.13 OFFLINE/LAND BASED, BY TYPE

10.5.13.1 MOBILE

10.5.13.2 DESKTOP

10.5.14 GAMING & GAMBLING, BY GAMBLING ENTITY

10.5.15 ORGANIZATIONS

10.5.16 SOLE TRADER/PARTNERSHIP

10.5.17 OTHERS

10.6 OTHERS

11 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY REGION

11.1 ASIA PACIFIC

11.1.1 CHINA

11.1.2 JAPAN

11.1.3 INDIA

11.1.4 SOUTH KOREA

11.1.5 AUSTRALIA

11.1.6 SINGAPORE

11.1.7 THAILAND

11.1.8 INDONESIA

11.1.9 MALAYSIA

11.1.10 PHILIPPINES

11.1.11 REST OF ASIA-PACIFIC

12 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, COMPANY LANDSCAPE

12.1 COMPANY SHARE ANALYSIS: ASIA-PACIFIC

13 SWOT ANALYSIS

14 COMPANY PROFILE

14.1 ACCENTURE

14.1.1 COMPANY SNAPSHOT

14.1.2 REVENUE ANALYSIS

14.1.3 COMPANY SHARE ANALYSIS

14.1.4 SERVICE PORTFOLIO

14.1.5 RECENT DEVELOPMENTS

14.2 ORACLE

14.2.1 COMPANY SNAPSHOT

14.2.2 REVENUE ANALYSIS

14.2.3 COMPANY SHARE ANALYSIS

14.2.4 SOLUTION PORTFOLIO

14.2.5 RECENT DEVELOPMENTS

14.3 COGNIZANT

14.3.1 COMPANY SNAPSHOT

14.3.2 REVENUE ANALYSIS

14.3.3 COMPANY SHARE ANALYSIS

14.3.4 SOLUTION PORTFOLIO

14.3.5 RECENT DEVELOPMENT

14.4 INTEL CORPORATION

14.4.1 COMPANY SNAPSHOT

14.4.2 REVENUE ANALYSIS

14.4.3 COMPANY SHARE ANALYSIS

14.4.4 SOLUTION PORTFOLIO

14.4.5 RECENT DEVELOPMENTS

14.5 IBM

14.5.1 COMPANY SNAPSHOT

14.5.2 REVENUE ANALYSIS

14.5.3 COMPANY SHARE ANALYSIS

14.5.4 SOLUTION PORTFOLIO

14.5.5 RECENT DEVELOPMENTS

14.6 ACI WORLDWIDE

14.6.1 COMPANY SNAPSHOT

14.6.2 REVENUE ANALYSIS

14.6.3 SOLUTION PORTFOLIO

14.6.4 RECENT DEVELOPMENTS

14.7 BAE SYSTEMS

14.7.1 COMPANY SNAPSHOT

14.7.2 REVENUE ANALYSIS

14.7.3 SOLUTION PORTFOLIO

14.7.4 RECENT DEVELOPMENT

14.8 EXPERIAN INFORMATION SOLUTIONS, INC

14.8.1 COMPANY SNAPSHOT

14.8.2 REVENUE ANALYSIS

14.8.3 SOLUTION PORTFOLIO

14.8.4 RECENT DEVELOPMENTS

14.9 NICE

14.9.1 COMPANY SNAPSHOT

14.9.2 SOLUTION PORTFOLIO

14.9.3 RECENT DEVELOPMENTS

14.1 OPEN TEXT CORPORATION

14.10.1 COMPANY SNAPSHOT

14.10.2 REVENUE ANALYSIS

14.10.3 SOLUTION PORTFOLIO

14.10.4 RECENT DEVELOPMENTS

14.11 SANCTIONS.IO

14.11.1 COMPANY SNAPSHOT

14.11.2 SOLUTION PORTFOLIO

14.11.3 RECENT DEVELOPMENT

14.12 SAP SE

14.12.1 COMPANY SNAPSHOT

14.12.2 REVENUE ANALYSIS

14.12.3 SERVICE PORTFOLIO

14.12.4 RECENT DEVELOPMENTS

14.13 SAS INSTITUTE INC.

14.13.1 COMPANY SNAPSHOT

14.13.2 SOLUTION PORTFOLIO

14.13.3 RECENT DEVELOPMENTS

14.14 TEMENOS HEADQUARTERS SA

14.14.1 COMPANY SNAPSHOT

14.14.2 REVENUE ANALYSIS

14.14.3 PRODUCT PORTFOLIO

14.14.4 RECENT DEVELOPMENTS

14.15 TRULIOO

14.15.1 COMPANY SNAPSHOT

14.15.2 INDUSTRIES PORTFOLIO

14.15.3 RECENT DEVELOPMENTS

14.16 VIXIO REGULATORY INTELLIGENCE

14.16.1 COMPANY SNAPSHOT

14.16.2 SOLUTION PORTFOLIO

14.16.3 RECENT DEVELOPMENTS

14.17 WORKFUSION, INC

14.17.1 COMPANY SNAPSHOT

14.17.2 SOLUTION PORTFOLIO

14.17.3 RECENT DEVELOPMENTS

15 QUESTIONNAIRE

16 RELATED REPORTS

Tabellenverzeichnis

TABLE 1 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: REGULATIONS ON COUNTRY LEVEL

TABLE 2 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 3 ASIA-PACIFIC SOLUTION IN ANTI-MONEY LAUNDERING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 4 ASIA-PACIFIC SOLUTION IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 5 ASIA-PACIFIC SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 6 ASIA-PACIFIC SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 7 ASIA-PACIFIC PROFESSIONAL SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 8 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)

TABLE 9 ASIA-PACIFIC COMPLIANCE MANAGEMENT IN ANTI-MONEY LAUNDERING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 10 ASIA-PACIFIC CUSTOMER IDENTITY MANAGEMENT IN ANTI-MONEY LAUNDERING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 11 ASIA-PACIFIC TRANSACTION MONITORING IN ANTI-MONEY LAUNDERING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 12 ASIA-PACIFIC CURRENCY TRANSACTION REPORTING IN ANTI-MONEY LAUNDERING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 13 ASIA-PACIFIC OTHERS IN ANTI-MONEY LAUNDERING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 14 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY DEPLOYMENT, 2022-2031 (USD THOUSAND)

TABLE 15 ASIA-PACIFIC CLOUD IN ANTI-MONEY LAUNDERING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 16 ASIA-PACIFIC ON-PREMISE IN ANTI-MONEY LAUNDERING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 17 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY ENTERPRISE SIZE, 2022-2031 (USD THOUSAND)

TABLE 18 ASIA-PACIFIC LARGE ENTERPRISES IN ANTI-MONEY LAUNDERING MARKET, BY REGION, 2022-2031 (USD THOUSAND

TABLE 19 ASIA-PACIFIC SMALL & MEDIUM ENTERPRISES IN ANTI-MONEY LAUNDERING MARKET, BY REGION, 2022-2031 (USD THOUSAND

TABLE 20 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY END USE, 2022-2031 (USD THOUSAND)

TABLE 21 ASIA-PACIFIC BANKS & FINANCIAL INSTITUTION IN ANTI-MONEY LAUNDERING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 22 ASIA-PACIFIC INSURANCE PROVIDERS IN ANTI-MONEY LAUNDERING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 23 ASIA-PACIFIC GOVERNMENT IN ANTI-MONEY LAUNDERING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 24 ASIA-PACIFIC GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 25 ASIA-PACIFIC GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING TYPE, 2022-2031 (USD THOUSAND)

TABLE 26 ASIA-PACIFIC CASINO IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 27 ASIA-PACIFIC SPORTS BETTING IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 28 ASIA-PACIFIC GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)

TABLE 29 ASIA-PACIFIC LIVE ENTERTAINMENT/ONLINE IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 30 ASIA-PACIFIC OFFLINE/LAND BASED IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 31 ASIA-PACIFIC GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING ENTITY, 2022-2031 (USD THOUSAND)

TABLE 32 ASIA-PACIFIC OTHERS IN ANTI-MONEY LAUNDERING MARKET, BY REGION, 2022-2031 (USD THOUSAND)

TABLE 33 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY COUNTRY, 2022-2031 (USD THOUSAND)

TABLE 34 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 35 ASIA-PACIFIC SOLUTION IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 36 ASIA-PACIFIC SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 37 ASIA-PACIFIC PROFESSIONAL SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 38 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)

TABLE 39 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY DEPLOYMENT, 2022-2031 (USD THOUSAND)

TABLE 40 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY ENTERPRISE SIZE, 2022-2031 (USD THOUSAND)

TABLE 41 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY END USE, 2022-2031 (USD THOUSAND)

TABLE 42 ASIA-PACIFIC GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING TYPE, 2022-2031 (USD THOUSAND)

TABLE 43 ASIA-PACIFIC CASINO IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 44 ASIA-PACIFIC SPORTS BETTING IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 45 ASIA-PACIFIC GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)

TABLE 46 ASIA-PACIFIC LIVE ENTERTAINMENT/ONLINE IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 47 ASIA-PACIFIC OFFLINE/LAND BASED IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 48 ASIA-PACIFIC GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING ENTITY, 2022-2031 (USD THOUSAND)

TABLE 49 CHINA ANTI-MONEY LAUNDERING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 50 CHINA SOLUTION IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 51 CHINA SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 52 CHINA PROFESSIONAL SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 53 CHINA ANTI-MONEY LAUNDERING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)

TABLE 54 CHINA ANTI-MONEY LAUNDERING MARKET, BY DEPLOYMENT, 2022-2031 (USD THOUSAND)

TABLE 55 CHINA ANTI-MONEY LAUNDERING MARKET, BY ENTERPRISE SIZE, 2022-2031 (USD THOUSAND)

TABLE 56 CHINA ANTI-MONEY LAUNDERING MARKET, BY END USE, 2022-2031 (USD THOUSAND)

TABLE 57 CHINA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING TYPE, 2022-2031 (USD THOUSAND)

TABLE 58 CHINA CASINO IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 59 CHINA SPORTS BETTING IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 60 CHINA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)

TABLE 61 CHINA LIVE ENTERTAINMENT/ONLINE IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 62 CHINA OFFLINE/LAND BASED IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 63 CHINA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING ENTITY, 2022-2031 (USD THOUSAND)

TABLE 64 JAPAN ANTI-MONEY LAUNDERING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 65 JAPAN SOLUTION IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 66 JAPAN SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 67 JAPAN PROFESSIONAL SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 68 JAPAN ANTI-MONEY LAUNDERING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)

TABLE 69 JAPAN ANTI-MONEY LAUNDERING MARKET, BY DEPLOYMENT, 2022-2031 (USD THOUSAND)

TABLE 70 JAPAN ANTI-MONEY LAUNDERING MARKET, BY ENTERPRISE SIZE, 2022-2031 (USD THOUSAND)

TABLE 71 JAPAN ANTI-MONEY LAUNDERING MARKET, BY END USE, 2022-2031 (USD THOUSAND)

TABLE 72 JAPAN GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING TYPE, 2022-2031 (USD THOUSAND)

TABLE 73 JAPAN CASINO IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 74 JAPAN SPORTS BETTING IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 75 JAPAN GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)

TABLE 76 JAPAN LIVE ENTERTAINMENT/ONLINE IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 77 JAPAN OFFLINE/LAND BASED IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 78 JAPAN GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING ENTITY, 2022-2031 (USD THOUSAND)

TABLE 79 INDIA ANTI-MONEY LAUNDERING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 80 INDIA SOLUTION IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 81 INDIA SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 82 INDIA PROFESSIONAL SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 83 INDIA ANTI-MONEY LAUNDERING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)

TABLE 84 INDIA ANTI-MONEY LAUNDERING MARKET, BY DEPLOYMENT, 2022-2031 (USD THOUSAND)

TABLE 85 INDIA ANTI-MONEY LAUNDERING MARKET, BY ENTERPRISE SIZE, 2022-2031 (USD THOUSAND)

TABLE 86 INDIA ANTI-MONEY LAUNDERING MARKET, BY END USE, 2022-2031 (USD THOUSAND)

TABLE 87 INDIA CASINO IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 88 INDIA SPORTS BETTING IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 89 INDIA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)

TABLE 90 INDIA LIVE ENTERTAINMENT/ONLINE IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 91 INDIA OFFLINE/LAND BASED IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 92 INDIA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING ENTITY, 2022-2031 (USD THOUSAND)

TABLE 93 SOUTH KOREA ANTI-MONEY LAUNDERING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 94 SOUTH KOREA SOLUTION IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 95 SOUTH KOREA SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 96 SOUTH KOREA PROFESSIONAL SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 97 SOUTH KOREA ANTI-MONEY LAUNDERING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)

TABLE 98 SOUTH KOREA ANTI-MONEY LAUNDERING MARKET, BY DEPLOYMENT, 2022-2031 (USD THOUSAND)

TABLE 99 SOUTH KOREA ANTI-MONEY LAUNDERING MARKET, BY ENTERPRISE SIZE, 2022-2031 (USD THOUSAND)

TABLE 100 SOUTH KOREA ANTI-MONEY LAUNDERING MARKET, BY END USE, 2022-2031 (USD THOUSAND)

TABLE 101 SOUTH KOREA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING TYPE, 2022-2031 (USD THOUSAND)

TABLE 102 SOUTH KOREA CASINO IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 103 SOUTH KOREA SPORTS BETTING IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 104 SOUTH KOREA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)

TABLE 105 SOUTH KOREA LIVE ENTERTAINMENT/ONLINE IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 106 SOUTH KOREA OFFLINE/LAND BASED IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 107 SOUTH KOREA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING ENTITY, 2022-2031 (USD THOUSAND)

TABLE 108 AUSTRALIA ANTI-MONEY LAUNDERING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 109 AUSTRALIA SOLUTION IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 110 AUSTRALIA SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 111 AUSTRALIA PROFESSIONAL SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 112 AUSTRALIA ANTI-MONEY LAUNDERING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)

TABLE 113 AUSTRALIA ANTI-MONEY LAUNDERING MARKET, BY DEPLOYMENT, 2022-2031 (USD THOUSAND)

TABLE 114 AUSTRALIA ANTI-MONEY LAUNDERING MARKET, BY ENTERPRISE SIZE, 2022-2031 (USD THOUSAND)

TABLE 115 AUSTRALIA ANTI-MONEY LAUNDERING MARKET, BY END USE, 2022-2031 (USD THOUSAND)

TABLE 116 AUSTRALIA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING TYPE, 2022-2031 (USD THOUSAND)

TABLE 117 AUSTRALIA CASINO IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 118 AUSTRALIA SPORTS BETTING IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 119 AUSTRALIA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)

TABLE 120 AUSTRALIA LIVE ENTERTAINMENT/ONLINE IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 121 AUSTRALIA OFFLINE/LAND BASED IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 122 AUSTRALIA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING ENTITY, 2022-2031 (USD THOUSAND)

TABLE 123 SINGAPORE ANTI-MONEY LAUNDERING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 124 SINGAPORE SOLUTION IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 125 SINGAPORE SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 126 SINGAPORE PROFESSIONAL SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 127 SINGAPORE ANTI-MONEY LAUNDERING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)

TABLE 128 SINGAPORE ANTI-MONEY LAUNDERING MARKET, BY DEPLOYMENT, 2022-2031 (USD THOUSAND)

TABLE 129 SINGAPORE ANTI-MONEY LAUNDERING MARKET, BY ENTERPRISE SIZE, 2022-2031 (USD THOUSAND)

TABLE 130 SINGAPORE ANTI-MONEY LAUNDERING MARKET, BY END USE, 2022-2031 (USD THOUSAND)

TABLE 131 SINGAPORE GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING TYPE, 2022-2031 (USD THOUSAND)

TABLE 132 SINGAPORE CASINO IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 133 SINGAPORE SPORTS BETTING IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 134 SINGAPORE GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)

TABLE 135 SINGAPORE LIVE ENTERTAINMENT/ONLINE IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 136 SINGAPORE OFFLINE/LAND BASED IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 137 SINGAPORE GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING ENTITY, 2022-2031 (USD THOUSAND)

TABLE 138 THAILAND ANTI-MONEY LAUNDERING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 139 THAILAND SOLUTION IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 140 THAILAND SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 141 THAILAND PROFESSIONAL SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 142 THAILAND ANTI-MONEY LAUNDERING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)

TABLE 143 THAILAND ANTI-MONEY LAUNDERING MARKET, BY DEPLOYMENT, 2022-2031 (USD THOUSAND)

TABLE 144 THAILAND ANTI-MONEY LAUNDERING MARKET, BY ENTERPRISE SIZE, 2022-2031 (USD THOUSAND)

TABLE 145 THAILAND ANTI-MONEY LAUNDERING MARKET, BY END USE, 2022-2031 (USD THOUSAND)

TABLE 146 THAILAND GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING TYPE, 2022-2031 (USD THOUSAND)

TABLE 147 THAILAND CASINO IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 148 THAILAND SPORTS BETTING IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 149 THAILAND GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)

TABLE 150 THAILAND LIVE ENTERTAINMENT/ONLINE IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 151 THAILAND OFFLINE/LAND BASED IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 152 THAILAND GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING ENTITY, 2022-2031 (USD THOUSAND)

TABLE 153 INDONESIA ANTI-MONEY LAUNDERING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 154 INDONESIA SOLUTION IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 155 INDONESIA SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 156 INDONESIA PROFESSIONAL SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 157 INDONESIA ANTI-MONEY LAUNDERING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)

TABLE 158 INDONESIA ANTI-MONEY LAUNDERING MARKET, BY DEPLOYMENT, 2022-2031 (USD THOUSAND)

TABLE 159 INDONESIA ANTI-MONEY LAUNDERING MARKET, BY ENTERPRISE SIZE, 2022-2031 (USD THOUSAND)

TABLE 160 INDONESIA ANTI-MONEY LAUNDERING MARKET, BY END USE, 2022-2031 (USD THOUSAND)

TABLE 161 INDONESIA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING TYPE, 2022-2031 (USD THOUSAND)

TABLE 162 INDONESIA CASINO IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 163 INDONESIA SPORTS BETTING IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 164 INDONESIA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)

TABLE 165 INDONESIA LIVE ENTERTAINMENT/ONLINE IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 166 INDONESIA OFFLINE/LAND BASED IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 167 INDONESIA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING ENTITY, 2022-2031 (USD THOUSAND)

TABLE 168 MALAYSIA ANTI-MONEY LAUNDERING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 169 MALAYSIA SOLUTION IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 170 MALAYSIA SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 171 MALAYSIA PROFESSIONAL SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 172 MALAYSIA ANTI-MONEY LAUNDERING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)

TABLE 173 MALAYSIA ANTI-MONEY LAUNDERING MARKET, BY DEPLOYMENT, 2022-2031 (USD THOUSAND)

TABLE 174 MALAYSIA ANTI-MONEY LAUNDERING MARKET, BY ENTERPRISE SIZE, 2022-2031 (USD THOUSAND)

TABLE 175 MALAYSIA ANTI-MONEY LAUNDERING MARKET, BY END USE, 2022-2031 (USD THOUSAND)

TABLE 176 MALAYSIA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING TYPE, 2022-2031 (USD THOUSAND)

TABLE 177 MALAYSIA CASINO IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 178 MALAYSIA SPORTS BETTING IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 179 MALAYSIA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)

TABLE 180 MALAYSIA LIVE ENTERTAINMENT/ONLINE IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 181 MALAYSIA OFFLINE/LAND BASED IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 182 MALAYSIA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING ENTITY, 2022-2031 (USD THOUSAND)

TABLE 183 PHILIPPINES ANTI-MONEY LAUNDERING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

TABLE 184 PHILIPPINES SOLUTION IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 185 PHILIPPINES SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)

TABLE 186 PHILIPPINES PROFESSIONAL SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 187 PHILIPPINES ANTI-MONEY LAUNDERING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)

TABLE 188 PHILIPPINES ANTI-MONEY LAUNDERING MARKET, BY DEPLOYMENT, 2022-2031 (USD THOUSAND)

TABLE 189 PHILIPPINES ANTI-MONEY LAUNDERING MARKET, BY ENTERPRISE SIZE, 2022-2031 (USD THOUSAND)

TABLE 190 PHILIPPINES ANTI-MONEY LAUNDERING MARKET, BY END USE, 2022-2031 (USD THOUSAND)

TABLE 191 PHILIPPINES GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING TYPE, 2022-2031 (USD THOUSAND)

TABLE 192 PHILIPPINES CASINO IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 193 PHILIPPINES SPORTS BETTING IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 194 PHILIPPINES GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)

TABLE 195 PHILIPPINES LIVE ENTERTAINMENT/ONLINE IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 196 PHILIPPINES OFFLINE/LAND BASED IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)

TABLE 197 PHILIPPINES GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING ENTITY, 2022-2031 (USD THOUSAND)

TABLE 198 REST OF ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)

Abbildungsverzeichnis

FIGURE 1 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: SEGMENTATION

FIGURE 2 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: DATA TRIANGULATION

FIGURE 3 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: DROC ANALYSIS

FIGURE 4 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: ASIA-PACIFIC VS REGIONAL MARKET ANALYSIS

FIGURE 5 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: COMPANY RESEARCH ANALYSIS

FIGURE 6 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: INTERVIEW DEMOGRAPHICS

FIGURE 7 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: DBMR MARKET POSITION GRID

FIGURE 8 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: VENDOR SHARE ANALYSIS

FIGURE 9 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: MULTIVARIATE MODELING

FIGURE 10 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: OFFERING TIMELINE CURVE

FIGURE 11 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: MARKET END USE COVERAGE GRID

FIGURE 12 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: SEGMENTATION

FIGURE 13 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET

FIGURE 14 STRATEGIC DECISIONS

FIGURE 15 TWO SEGMENTS COMPRISE THE ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY OFFERING (2023)

FIGURE 16 INCREASED FINANCIAL CRIMES DETECTION EFFORT IS EXPECTED TO DRIVE THE ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET DURING THE FORECAST PERIOD OF 2024 TO 2031

FIGURE 17 SOLUTION SEGMENT IS EXPECTED TO ACCOUNT FOR THE LARGEST SHARE OF THE ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET IN 2024 & 2031

FIGURE 18 USE TRANSACTION MONITORING OPERATIONS

FIGURE 19 DRIVERS, RESTRAINTS, OPPORTUNITIES, AND CHALLENGES OF EUROPE ANTI-MONEY LAUNDERING SOFTWARE MARKET

FIGURE 20 COMMON TYPES OF AML SOFTWARE

FIGURE 21 STAGES OF MONEY LAUNDERING IN GAMBLING

FIGURE 22 ADVANCED AML ANALYTICS

FIGURE 23 USING GRAPH ANALYTICS FOR ONLINE GAMBLING

FIGURE 24 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: BY OFFERING, 2023

FIGURE 25 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: BY FUNCTION, 2023

FIGURE 26 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: BY DEPLOYMENT, 2023

FIGURE 27 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: BY ENTERPRISE SIZE, 2023

FIGURE 28 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: BY END USE, 2023

FIGURE 29 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: SNAPSHOT (2023)

FIGURE 30 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: COMPANY SHARE 2023 (%)

Detaillierte Informationen anzeigen Right Arrow

Forschungsmethodik

Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.

Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.

Anpassung möglich

Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.

Häufig gestellte Fragen

The market value for the Asia Pacific Anti-Money Laundering Market in 2023 was USD 803 million.
The Asia Pacific Anti-Money Laundering Market is estimated to grow at a CAGR of 14.4% during the forecast period of 2024 to 2031.
Increased financial crimes detection effort, increasing stringent regulations and compliance for AML, growing demand for AML identification and rise in online gambling platforms are the major market drivers for the Asia Pacific Anti-Money Laundering Market .
Accenture (Ireland), ORACLE (U.S.), Cognizant (U.S.), Intel Corporation (U.S.), IBM (U.S.) are the major companies operating in this market.
The countries covered in the report China, Japan, South Korea, India, Taiwan, Vietnam, New Zealand, Australia, Philippines, Thailand, Malaysia, Singapore, Indonesia and the rest of Asia-Pacific.