Asia Pacific Anti Money Laundering Market
Marktgröße in Milliarden USD
CAGR : %
Prognosezeitraum |
2024 –2031 |
Marktgröße (Basisjahr) | USD 803.54 Million |
Marktgröße (Prognosejahr) | USD 2,330.37 Million |
CAGR |
|
Wichtige Marktteilnehmer |
>Marktsegmentierung zur Geldwäschebekämpfung im asiatisch-pazifischen Raum nach Angebot (Lösungen und Dienste), Funktion (Compliance-Management, Kundenidentitätsmanagement, Transaktionsüberwachung, Berichterstattung über Währungstransaktionen und andere), Bereitstellung (Cloud und vor Ort), Unternehmensgröße (Großunternehmen und kleine und mittlere Unternehmen), Endnutzung ( Banken und Finanzinstitute, Versicherungsanbieter, Regierung, Gaming und Glücksspiel und andere) – Branchentrends und Prognose bis 2031.
Marktanalyse zur Geldwäschebekämpfung im asiatisch-pazifischen Raum
Der Markt für Geldwäschebekämpfung im asiatisch-pazifischen Raum hat aufgrund der gestiegenen Nachfrage nach Transaktionsüberwachungssystemen zur Bewertung von Mustern der Finanzkriminalität ein Wachstum erlebt. Dies kann in verschiedenen anderen Anwendungen zur Aufdeckung von Finanzkriminalität wie Terrorismusfinanzierung, Betrug, Drogenhandel, Bestechung, Korruption und Identitätsdiebstahl eingesetzt werden, die die Wirtschaft des Landes erheblich beeinträchtigen können. In jüngster Zeit erfreuen sich AML-Lösungen bei verschiedenen Finanzinstituten wie Versicherungsunternehmen, Geschäftsbanken, Internetbanken, Privatkundenbanken, Versicherungsunternehmen und Hypothekenbanken zunehmender Beliebtheit. Darüber hinaus erfreuen sie sich in verschiedenen Branchen wie der Spiel- und Glücksspielbranche, der Immobilienbranche, dem Devisenhandel (MSB), der Zahlungsbranche, der Investmentbranche und Regierungsbehörden auf der ganzen Welt zunehmender Beliebtheit.
Marktgröße für Geldwäschebekämpfung im asiatisch-pazifischen Raum
Laut einer Analyse von Data Bridge Market Research wird der Markt für Geldwäschebekämpfung im asiatisch-pazifischen Raum voraussichtlich von 803,54 Millionen US-Dollar im Jahr 2023 auf 2.330,37 Millionen US-Dollar im Jahr 2031 anwachsen und im Prognosezeitraum zwischen 2024 und 2031 eine durchschnittliche jährliche Wachstumsrate (CAGR) von 14,4 % aufweisen.
Markttrends zur Geldwäschebekämpfung im asiatisch-pazifischen Raum
„Verstärkte Bemühungen zur Aufdeckung von Finanzkriminalität“
Die verstärkten Bemühungen zur Aufdeckung von Finanzkriminalität haben die Kontrolle der Maßnahmen zur Bekämpfung der Geldwäsche (AML) intensiviert, wobei der Schwerpunkt auf der Verbesserung der Compliance und der Überwachung von Systemtrends liegt. Finanzinstitute implementieren strengere Verfahren, um verdächtige Transaktionen und Muster zu identifizieren, die auf Geldwäsche hindeuten. Zu diesen Maßnahmen gehören die Stärkung der internen Kontrollen, die Verbesserung der Transaktionsmeldepraktiken und die Verbesserung der Zusammenarbeit mit Aufsichtsbehörden. Das Streben nach mehr Transparenz und Rechenschaftspflicht zielt darauf ab, Netzwerke der Finanzkriminalität zu zerschlagen und illegale Finanzströme zu reduzieren. Durch die Einführung umfassender AML-Rahmenwerke versuchen Organisationen, Risiken zu mindern und die Integrität des Finanzsystems zu schützen. Dieser proaktive Ansatz spiegelt ein umfassenderes Engagement zur Bekämpfung von Finanzkriminalität und zur Einhaltung gesetzlicher Vorschriften wider.
Umfang des Berichts und Marktsegmentierung zur Geldwäschebekämpfung
Berichtsmetrik |
Einblicke in den Markt für Geldwäschebekämpfung im asiatisch-pazifischen Raum |
Abgedeckte Segmente |
|
Abgedeckte Länder |
China, Japan, Indien, Südkorea, Australien, Singapur, Malaysia, Thailand, Indonesien, Philippinen, Taiwan, Vietnam und Rest des asiatisch-pazifischen Raums |
Wichtige Marktteilnehmer |
BAE Systems, NICE, SAP SE, Open Text Corporation, ACI Worldwide, Accenture, Oracle, Cognizant, Intel Corporation und IBM um nur einige zu nennen. |
Marktchancen |
|
Mehrwertdaten |
Zusätzlich zu den Markteinblicken wie Marktwert, Wachstumsrate, Marktsegmenten, geografischer Abdeckung, Marktteilnehmern und Marktszenario enthält der vom Data Bridge Market Research-Team zusammengestellte Marktbericht eine eingehende Expertenanalyse, Import-/Exportanalyse, Preisanalyse, Produktionsverbrauchsanalyse und PESTLE-Analyse. |
Definition des Marktes zur Geldwäschebekämpfung im asiatisch-pazifischen Raum
Lösungen zur Geldwäschebekämpfung (AML) werden eingesetzt, um Geldwäsche, Terrorismusfinanzierung, Betrug, elektronische Kriminalität, Bestechung und Korruption, Steuerhinterziehung, Unterschlagung, Informationssicherheit, illegale grenzüberschreitende Transaktionen und andere Fälle zu erkennen und die Institutionen davor zu warnen, da diese die Wirtschaft eines Landes stark beeinträchtigen und seinen Ruf schädigen können. AML ist ein Begriff, der im Allgemeinen zur Beschreibung des Kampfes gegen Geldwäsche und Finanzkriminalität verwendet wird. Lösungen zur Geldwäschebekämpfung (AML) entsprechen verschiedenen Richtlinien, Gesetzen und Vorschriften, die zur Verhinderung von Finanzkriminalität beitragen . Diese Richtlinien, Richtlinien und Gesetze werden von lokalen Regulierungsbehörden weltweit festgelegt, um die Funktionsweise von AML-Lösungen zu stärken.
Dynamik des Geldwäschebekämpfungsmarktes im asiatisch-pazifischen Raum
In diesem Abschnitt geht es um das Verständnis der Markttreiber, Vorteile, Chancen, Einschränkungen und Herausforderungen. All dies wird im Folgenden ausführlich erläutert:
Treiber
- Verstärkte Bemühungen zur Aufdeckung von Finanzkriminalität
Durch verstärkte Bemühungen zur Aufdeckung von Finanzkriminalität werden Maßnahmen zur Geldwäschebekämpfung (AML) intensiviert, wobei der Schwerpunkt auf der Verbesserung von Compliance- und Überwachungssystemen liegt. Finanzinstitute implementieren strengere Verfahren, um verdächtige Transaktionen und Muster zu identifizieren, die auf Geldwäsche hindeuten. Zu diesen Maßnahmen gehören die Stärkung der internen Kontrollen, die Verbesserung der Transaktionsmeldepraktiken und die Verbesserung der Zusammenarbeit mit Aufsichtsbehörden. Das Streben nach mehr Transparenz und Rechenschaftspflicht zielt darauf ab, Netzwerke von Finanzkriminellen zu zerschlagen und illegale Finanzströme zu reduzieren. Durch die Einführung umfassender AML-Rahmenwerke versuchen Organisationen, Risiken zu mindern und die Integrität des Finanzsystems zu schützen.
Zum Beispiel,
- Im August 2024 hat ThetaRay, ein israelischer Anbieter von KI-gesteuerter Transaktionsüberwachung, laut dem Blog Informa PLC das belgische Fintech-Unternehmen Screena übernommen. Es bietet eine KI-gestützte AML-Screening-Lösung für Finanzinstitute (FIs). Diese Übernahme zielt darauf ab, ThetaRays Fähigkeit zu verbessern, einen umfassenden Überblick über Transaktions- und Kundenscreening-Risiken zu bieten. Sie unterstützt verstärkte Bemühungen zur Aufdeckung von Finanzkriminalität, einschließlich illegaler Aktivitäten im Zusammenhang mit Glücksspiel, und stärkt ThetaRays cloudbasierte, durchgängige Plattform zur Aufdeckung von Finanzkriminalität
- Zunehmend strengere Vorschriften und Compliance im Zusammenhang mit der Bekämpfung von Geldwäsche
Ein Anti-Geldwäsche-Compliance-Programm ist eine Reihe von Vorschriften oder Regeln, die ein Finanzinstitut befolgen muss, um Geldwäsche und Terrorismusfinanzierung zu verhindern und aufzudecken. Finanzkriminalität gegen Finanzinstitute wie Banken und Kreditgenossenschaften hat in letzter Zeit zugenommen. Im Jahr 2019 gab es einen Anstieg der Fälle von Finanzbetrug um etwa 50 bis 60 % gegenüber 2018, und es wird erwartet, dass dieser Anstieg in den kommenden Jahren weiter zunimmt. Die Verluste, die den Banken in ganz Europa entstehen, sind ziemlich beträchtlich.
Zum Beispiel,
- Im Juli 2024 weiteten die Regierungen laut dem von The Good Returns veröffentlichten Artikel die Vorschriften zur Bekämpfung der Geldwäsche (AML) über traditionelle Finanzinstitute hinaus auf nichtfinanzielle Sektoren wie Immobilien und virtuelle Vermögenswerte aus. Diese Ausweitung zielte darauf ab, Schwachstellen in diesen Sektoren aufgrund ihrer Transaktionen mit hohem Wert und ihrer Intransparenz zu beheben. Außerdem wurden strengere Strafen für Verstöße eingeführt, um die Compliance-Kultur zu stärken und das Risiko finanzieller Ausbeutung zu verringern. Für Glücksspielunternehmen fördern diese verschärften Vorschriften einen robusteren Rahmen für die Bekämpfung der Geldwäsche, fördern die Integrität und verringern rechtliche Risiken
Gelegenheiten
- Zunehmende Nutzung fortschrittlicher Analysen im Bereich Geldwäschebekämpfung
Advanced Analytics ist das autonome oder halbautonome System, das Daten oder Inhalte mithilfe ausgefeilter Techniken und Tools analysiert, was sich deutlich von herkömmlicher Business Intelligence unterscheidet. Diese Analysen ermöglichen eine tiefere Analyse, anhand derer das System Vorhersagen trifft und Empfehlungen generiert. Advanced Analytics in AML-Lösungen kann eine wichtige Rolle bei der Erkennung von Geldwäsche, Finanzkriminalität, Identitätsdiebstahl und grenzüberschreitenden Transaktionen spielen. Darüber hinaus kann Advanced Analytics eine wichtige Rolle bei der erweiterten Transaktionsüberwachung spielen.
Nach Angaben des Büros der Vereinten Nationen für Drogen- und Verbrechensbekämpfung (UNODC) werden jährlich 2 Billionen US-Dollar illegales Geld ausgegeben. Eine weitere 2018 von der Baseler Anti-Geldwäsche-Agentur (AML) durchgeführte Umfrage ergab, dass 64 % der Länder in der Rangliste von 2018 (83/129) einen Risikowert von 5,0 oder höher aufweisen und grob als Länder mit einem erheblichen Risiko für Geldwäsche und Terrorismusfinanzierung eingestuft werden können.
Zum Beispiel,
- Im Mai 2024 brachte das zu Pine Labs gehörende Unternehmen Setu laut einem von NDTV Profit veröffentlichten Artikel Indiens erste Large Language Model (LLM)-Anwendung auf den Markt, die speziell auf den BFSI-Sektor zugeschnitten ist. Dieses LLM, das anhand umfangreicher Datensätze trainiert wurde, kann Text erkennen und generieren. Die Einführung dieses fortschrittlichen Analysetools zielt darauf ab, die Bemühungen zur Bekämpfung von Geldwäsche (AML) durch die Verbesserung der Textverarbeitungs- und Analysefunktionen in Finanzdienstleistungen zu verbessern. Für Setu positioniert sich dieser Schritt als Vorreiter bei der Integration modernster KI in den BFSI-Sektor und bietet fortschrittliche Lösungen für Compliance und Risikomanagement.
- Integration von KI und ML bei der Entwicklung von AML-Lösungen
Geldwäsche ist zu einem sehr wichtigen Finanzproblem geworden, das die Finanzbehörden zu stoppen versuchen. Der Umfrage zufolge wird Geldwäsche auf 2 bis 5 % des europäischen BIP geschätzt, d. h. es wird ein Nettovermögen von 2 Billionen USD gewaschen. Es gibt noch zahlreiche weitere Probleme, wie etwa Identitätsdiebstahl und grenzüberschreitende Transaktionen.
Laut einer Umfrage wurden 2020 1,4 Millionen Beschwerden über Fälle von Identitätsdiebstahl registriert. Im Jahr 2020 wurden grenzüberschreitende Transaktionen in ganz Europa auf rund 23,21 Billionen USD geschätzt. Alle Finanzverbrechen geschehen aufgrund schwacher AML-Lösungen und der Zurückhaltung, die von den Regulierungsbehörden festgelegten Richtlinien einzuhalten. Laut der Untersuchung von Fenergo belegten Regulierungsbehörden/Behörden Banken 2019 mit Bußgeldern in Höhe von fast rekordverdächtigen 10 Milliarden USD. Es wurde auch darauf hingewiesen, dass 60,5 % der Strafen von Banken verhängt wurden, die gegen Vorschriften zur Geldwäschebekämpfung verstoßen hatten .
Zum Beispiel,
- Im März kündigte ACI Worldwide, Inc. die Einführung des ACI Fraud Scoring für Finanzinstitute an. Dabei handelt es sich um eine Plattform, die maschinelles Lernen der nächsten Generation ermöglicht. Mit dieser Einführung kann das Unternehmen sein Lösungsportfolio für seinen Kundenstamm erweitern. Diese Lösung hilft Finanzinstituten, ihre Zahlungsserver zu schützen
Einschränkungen/Herausforderungen
- Datenschutzbedenken bei der Überwachung von Kundendaten
Der Anstieg von Online-Glücksspielplattformen hat die Datenschutzbedenken hinsichtlich der Überwachung von Kundendaten verstärkt. Da die Betreiber fortschrittliche Maßnahmen zur Bekämpfung der Geldwäsche (AML) implementieren, sammeln und analysieren sie umfangreiche persönliche Informationen, um verdächtige Aktivitäten zu erkennen. Diese Überprüfung wirft erhebliche Datenschutzprobleme auf, da die sensiblen Daten der Benutzer zunehmend einer detaillierten Verfolgung und Überprüfung unterzogen werden. Die Balance zwischen effektiver Betrugsprävention und robustem Datenschutz ist von entscheidender Bedeutung, da eine übermäßige Überwachung zu Datenschutzverletzungen führen und das Vertrauen der Kunden untergraben kann.
Zum Beispiel,
- Laut einem von Mondaq Ltd. veröffentlichten Artikel führte Indiens Digital Personal Data Protection Act 2023 im Oktober 2023 neue Datenschutzbestimmungen ein, die sich auf die Online-Gaming-Branche auswirken. Das Gesetz betonte strengere Datenschutzmaßnahmen und verpflichtete Gaming-Plattformen, eine ausdrückliche Zustimmung zur Datenverarbeitung sicherzustellen, Rechte auf Datenzugriff und -korrektur zu gewähren und robuste Sicherheitspraktiken durchzusetzen. Die Vorschriften gingen auch auf Bedenken im Zusammenhang mit gezieltem Marketing ein, insbesondere gegenüber Minderjährigen, und legten höhere Compliance-Standards für Plattformen fest, die große Mengen an Benutzerdaten verarbeiten.
Der Einsatz von AML-Software ist teuer
Laut einer Umfrage des Government Accountability Office (GAO) gaben britische Banken 2018 zwischen 0,4 % und 2,4 % ihrer gesamten Betriebsausgaben für Software zur Geldwäschebekämpfung aus. Die befragten Banken gaben durchschnittlich 15 USD pro neuem Konto für Due-Diligence-Anforderungen aus, obwohl die tatsächlichen Kosten je nach Art der Bank zwischen 5 und 44 USD lagen. Es wurde festgestellt, dass die Banken am meisten für CDD (29 %) und Berichtskosten (durchschnittlich 28 %) ausgeben. Im Vergleich dazu entfielen 18 % auf Schulungen, Tests, interne Kontrollen, Software und Kosten Dritter, die durchschnittlich 17 % der AML-Lösungen ausmachten. In Europa ergab eine 2019 von LexisNexis Risk Solution durchgeführte Umfrage, dass die tatsächlichen Kosten für Software zur Geldwäschebekämpfung (AML) in europäischen Ländern sehr hoch sind, da die Nachfrage nach dem Produkt groß ist.
Zum Beispiel,
- Im September 2023 wurde HSBC laut dem von The Investopedia veröffentlichten Artikel mit einer Geldstrafe von 1,9 Milliarden US-Dollar belegt, weil es bei seinen Kontrollen zur Bekämpfung der Geldwäsche (AML) schwere Versäumnisse begangen hatte, insbesondere wegen Geldwäsche für mexikanische Drogenkartelle. Der Skandal zeigte Schwächen in den Compliance-Mechanismen von HSBC auf und führte zur Verhängung zusätzlicher zivilrechtlicher Strafen in Höhe von 665 Millionen US-Dollar. Dieser Fall unterstreicht die hohen Kosten für den Einsatz wirksamer AML-Software und Compliance-Maßnahmen im Bankwesen. Investitionen in fortschrittliche AML-Lösungen helfen, kostspielige Strafen zu vermeiden und die Einhaltung gesetzlicher Vorschriften aufrechtzuerhalten, was Finanzinstituten zugutekommt, da sie rechtliche Risiken reduzieren und die Betriebsintegrität verbessern.
Umfang des Geldwäschebekämpfungsmarktes im asiatisch-pazifischen Raum
Der Markt für Geldwäschebekämpfung im asiatisch-pazifischen Raum ist auf der Grundlage von Angebot, Funktion, Einsatz, Unternehmensgröße und Endverbrauch in fünf wichtige Segmente unterteilt. Das Wachstum dieser Segmente hilft Ihnen bei der Analyse schwacher Wachstumssegmente in den Branchen und bietet den Benutzern einen wertvollen Marktüberblick und Markteinblicke, die ihnen bei der strategischen Entscheidungsfindung zur Identifizierung der wichtigsten Marktanwendungen helfen.
Durch das Angebot
- Lösung
- KYC/CDD und Beobachtungsliste
- Transaktions-Screening und -Überwachung
- Fallmanagement
- Regulatorisches Reporting
- Dienstleistungen
- Typ
- Professioneller Service
- Verwalteter Dienst
- Typ
- Dienstleistungen
- Typ
- Integration
- Support und Wartung
- Training und Beratung
- Typ
Nach Funktion
- Aufsichtliches Compliance-Management
- Meldung von Währungstransaktionen
- Kundenidentitätsverwaltung
- Transaktionsüberwachung
Nach Bereitstellung
- Wolke
- Vor Ort
Nach Unternehmensgröße
- Große Unternehmen
- Kleine und mittlere Unternehmen
Nach Endverwendung
- Banken und Finanzinstitute
- Versicherer
- Gaming & Glücksspiel
- Glücksspieltyp
- Kasino
- Typ
- Live-Casinos
- Poker
- Blackjack
- Baccara
- Spielautomaten
- Sonstiges
- Typ
- Kasino
- Anwendung
- Live-Unterhaltung/Online
- Typ
- Hotels
- Mehrere Speisemöglichkeiten
- Sonstiges
- Typ
- Offline/landbasiert
- Typ
- Mobile
- Desktop
- Typ
- Sportwetten
- Typ
- Fußball
- E-Sport
- Pferderennen
- Sonstiges
- Typ
- Lotterie
- Bingo
- Gewinnspiele/Pools
- Live-Unterhaltung/Online
- Glücksspieltyp
- Regierung
- Sonstiges
Regionale Analyse des Marktes zur Geldwäschebekämpfung im asiatisch-pazifischen Raum
Der Markt zur Bekämpfung der Geldwäsche im asiatisch-pazifischen Raum ist auf der Grundlage von Angebot, Funktion, Einsatz, Unternehmensgröße und Endnutzung in fünf wichtige Segmente unterteilt.
Die im Marktbericht zur Geldwäschebekämpfung im asiatisch-pazifischen Raum abgedeckten Länder sind China, Japan, Indien, Südkorea, Australien, Singapur, Malaysia, Thailand, Indonesien, die Philippinen, Taiwan, Vietnam und der Rest des asiatisch-pazifischen Raums.
Aufgrund der Zunahme von Online-Glücksspielplattformen wird China voraussichtlich das dominierende Land in der Region sein und das am schnellsten wachsende Land.
Der Länderabschnitt des Berichts enthält auch individuelle marktbeeinflussende Faktoren und Änderungen der Marktregulierung, die die aktuellen und zukünftigen Trends des Marktes beeinflussen. Datenpunkte wie Downstream- und Upstream-Wertschöpfungskettenanalysen, technische Trends und Porters Fünf-Kräfte-Analyse sowie Fallstudien sind einige der Anhaltspunkte, die zur Prognose des Marktszenarios für einzelne Länder verwendet werden. Bei der Bereitstellung von Prognoseanalysen der Länderdaten werden auch die Präsenz und Verfügbarkeit von Marken und ihre Herausforderungen aufgrund großer oder geringer Konkurrenz durch lokale und inländische Marken sowie die Auswirkungen inländischer Zölle und Handelsrouten berücksichtigt.
Marktanteile im Bereich Geldwäschebekämpfung im asiatisch-pazifischen Raum
Die Wettbewerbslandschaft des Marktes zur Geldwäschebekämpfung im asiatisch-pazifischen Raum liefert Einzelheiten zum Wettbewerber. Zu den enthaltenen Einzelheiten gehören Unternehmensübersicht, Unternehmensfinanzen, erzielter Umsatz, Marktpotenzial, Investitionen in Forschung und Entwicklung, neue Marktinitiativen, Produktionsstandorte und -anlagen, Produktionskapazitäten, Stärken und Schwächen des Unternehmens, Produkteinführung, Produktbreite und -umfang, Anwendungsdominanz. Die oben angegebenen Datenpunkte beziehen sich nur auf den Schwerpunkt der Unternehmen.
Die im asiatisch-pazifischen Raum tätigen Marktführer im Bereich der Geldwäschebekämpfung sind:
- NIZZA (Israel)
- IBM (USA)
- sanktionen.io (USA)
- Intel Corporation (USA)
- Oracle (USA)
- SAP SE (Deutschland)
- Accenture (USA)
- Experian Informationslösung
- Inc. (Irland)
- Open Text Corporation (Kanada)
- BAE Systems (Großbritannien)
- SAS Institute Inc (USA)
- ACI Worldwide (USA)
- Cognizant (USA)
- Trulioo (Kanada)
- Temenos Headquarters SA (Schweiz)
- WorkFusion, Inc. (USA)
- Vixio Regulatory Intelligence (England)
Neueste Entwicklungen auf dem Markt für Geldwäschebekämpfung
- Im September 2023 gab IBM bekannt, dass sein Payments Center dem Swift-Partnerprogramm beigetreten ist, wodurch neue Möglichkeiten zur Zusammenarbeit mit über 11.000 Swift-Mitgliedern weltweit geschaffen wurden. Diese Partnerschaft ermöglichte es IBM, verbesserte Zahlungslösungen und eine durchgängige Cloud-basierte Swift-Konnektivität anzubieten, wodurch die Notwendigkeit für Kunden, Swift-Hardware und -Software zu verwalten, reduziert wurde. Die Zusammenarbeit half Finanzinstituten, Zahlungsplattformen zu modernisieren, auf KI-Technologien zuzugreifen und die Effizienz ohne hohe Entwicklungs- und Compliance-Kosten zu verbessern
- Im April 2024 stellte Oracle den Financial Services Compliance Agent vor, einen KI-gestützten Cloud-Dienst, der Banken dabei helfen soll, Risiken im Zusammenhang mit der Geldwäschebekämpfung (AML) zu mindern. Mit diesem Dienst können Banken kostengünstige Szenariotests durchführen, um Kontrollen anzupassen, verdächtige Transaktionen zu identifizieren und die Compliance zu verbessern. Darüber hinaus hilft er Banken dabei, Transaktionsüberwachungssysteme zu bewerten und zu optimieren, neue Produktrisiken zu bewerten und Hochrisikotypologien proaktiv anzugehen. Diese Lösung zielt darauf ab, die Compliance-Kosten zu senken und die Wirksamkeit von AML-Programmen zu verbessern
- Im Januar stellte Oracle seine umfassenden Cloud-Lösungen für Banken über Oracle Financial Services vor. Das Unternehmen betonte, dass Banken zunehmend Cloud-Dienste nutzen, die durch Fortschritte in den Bereichen KI und ML vorangetrieben werden. Oracle bietet eine vollständige Suite von Fintech-Lösungen, die Cloud-fähig, skalierbar und sicher sind und Banken eine Lösung aus einer Hand bieten, ohne dass mehrere Fintech-Partnerschaften erforderlich sind. Die Plattform von Oracle unterstützt über 3.000 Mikrodienste und offene APIs und hilft Banken, von Altsystemen umzusteigen und wettbewerbsfähig zu bleiben.
- Im September kündigten Oracle und Quantifind eine strategische Zusammenarbeit zur Verbesserung der Prozesse zur Bekämpfung der Geldwäsche (AML) an. Quantifinds SaaS-Lösungen für Ermittlungen, Kundensorgfaltspflichten und Warnmeldungsmanagement wurden in die Financial Crime and Compliance Management-Plattform von Oracle integriert. Ziel dieser Partnerschaft war es, die Effizienz der Geldwäschebekämpfung um bis zu 30 % zu steigern und Arbeitsabläufe mit fortschrittlicher KI und maschinellem Lernen zu optimieren. Durch die Integration konnten Oracle-Kunden auf umfassende Daten zugreifen und ihre AML-Compliance-Funktionen über eine einheitliche Plattform verbessern.
SKU-
Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud
- Interaktives Datenanalyse-Dashboard
- Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
- Zugriff für Research-Analysten für Anpassungen und Abfragen
- Konkurrenzanalyse mit interaktivem Dashboard
- Aktuelle Nachrichten, Updates und Trendanalyse
- Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Inhaltsverzeichnis
1 INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATIONS
1.6 MARKETS COVERED
2 MARKET SEGMENTATION
2.1 MARKETS COVERED
2.2 GEOGRAPHICAL SCOPE
2.3 YEARS CONSIDERED FOR THE STUDY
2.4 DBMR TRIPOD DATA VALIDATION MODEL
2.5 PRIMARY INTERVIEWS WITH KEY OPINION LEADERS
2.6 DBMR MARKET POSITION GRID
2.7 VENDOR SHARE ANALYSIS
2.8 MULTIVARIATE MODELING
2.9 OFFERING TIMELINE CURVE
2.1 MARKET END USE COVERAGE GRID
2.11 SECONDARY SOURCES
2.12 ASSUMPTIONS
3 EXECUTIVE SUMMARY
4 PREMIUM INSIGHTS
4.1 PORTER’S FIVE FORCES
4.2 USE CASE ANALYSIS
4.3 REGULATIONS ON COUNTRY LEVEL
5 MARKET OVERVIEW
5.1 DRIVERS
5.1.1 INCREASED FINANCIAL CRIMES DETECTION EFFORTS
5.1.2 INCREASING STRINGENT REGULATIONS AND COMPLIANCE RELATED TO AML
5.1.3 GROWING DEMAND FOR AML SOFTWARE’S
5.1.4 RISE IN ONLINE GAMBLING PLATFORMS
5.2 RESTRAINTS
5.2.1 PRIVACY CONCERNS IN CUSTOMER DATA MONITORING
5.2.2 DEPLOYING AML SOFTWARE IS EXPENSIVE
5.3 OPPORTUNITIES
5.3.1 INCREASING ADOPTION OF ADVANCED ANALYTICS IN AML
5.3.2 INTEGRATION OF AI AND ML IN DEVELOPING AML SOLUTIONS
5.4 CHALLENGES
5.4.1 EVOLVING MONEY LAUNDERING TECHNIQUES
5.4.2 DIFFICULTY IN MONITORING DECENTRALIZED FINANCE SYSTEMS
6 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY OFFERING
6.1 OVERVIEW
6.2 SOLUTION
6.2.1 SOLUTION, BY TYPE
6.2.2 KYC/CDD AND WATCHLIST
6.2.3 CASE MANAGEMENT
6.2.4 REGULATORY REPORTING
6.2.5 TRANSACTION SCREENING AND MONITORING
6.2.6 RISK-BASED APPROACH
6.2.7 OTHERS
6.3 SERVICES
6.3.1 SERVICES, BY TYPE
6.3.2 PROFESSIONAL SERVICES
6.3.3 PROFESSIONAL SERVICES, BY TYPE
6.3.3.1 INTEGRATION
6.3.3.2 SUPPORT AND MAINTENANCE
6.3.3.3 TRAINING AND CONSULTING
6.3.4 MANAGED SERVICES
7 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY FUNCTION
7.1 OVERVIEW
7.2 COMPLIANCE MANAGEMENT
7.3 CUSTOMER IDENTITY MANAGEMENT
7.4 TRANSACTION MONITORING
7.5 CURRENCY TRANSACTION REPORTING
7.6 OTHERS
8 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY DEPLOYMENT
8.1 OVERVIEW
8.2 CLOUD
8.3 ON-PREMISE
9 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY ENTERPRISE SIZE
9.1 OVERVIEW
9.2 LARGE ENTERPRISES
9.3 SMALL & MEDIUM ENTERPRISES
10 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY END USE
10.1 OVERVIEW
10.2 BANKS & FINANCIAL INSTITUTION
10.3 INSURANCE PROVIDERS
10.4 GOVERNMENT
10.5 GAMING & GAMBLING
10.5.1 GAMING & GAMBLING, BY GAMBLING TYPE
10.5.2 CASINO
10.5.3 CASINO, BY TYPE
10.5.3.1 LIVE CASINOS
10.5.3.2 POKER
10.5.3.3 BLACKJACK
10.5.3.4 BACCARAT
10.5.3.5 SLOTS
10.5.3.6 OTHERS
10.5.4 SPORTS BETTING
10.5.5 SPORTS BETTING, BY TYPE
10.5.5.1 FOOTBALL
10.5.5.2 E-SPORTS
10.5.5.3 HORSE RACING
10.5.5.4 OTHERS
10.5.6 LOTTERY
10.5.7 BINGO
10.5.8 RAFFLES/POOLS
10.5.9 GAMING & GAMBLING, BY APPLICATION
10.5.10 LIVE ENTERTAINMENT/ONLINE
10.5.11 LIVE ENTERTAINMENT/ONLINE, BY TYPE
10.5.11.1 HOTELS
10.5.11.2 MULTIPLE DINING OPTIONS
10.5.11.3 OTHERS
10.5.12 OFFLINE/LAND BASED
10.5.13 OFFLINE/LAND BASED, BY TYPE
10.5.13.1 MOBILE
10.5.13.2 DESKTOP
10.5.14 GAMING & GAMBLING, BY GAMBLING ENTITY
10.5.15 ORGANIZATIONS
10.5.16 SOLE TRADER/PARTNERSHIP
10.5.17 OTHERS
10.6 OTHERS
11 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY REGION
11.1 ASIA PACIFIC
11.1.1 CHINA
11.1.2 JAPAN
11.1.3 INDIA
11.1.4 SOUTH KOREA
11.1.5 AUSTRALIA
11.1.6 SINGAPORE
11.1.7 THAILAND
11.1.8 INDONESIA
11.1.9 MALAYSIA
11.1.10 PHILIPPINES
11.1.11 REST OF ASIA-PACIFIC
12 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, COMPANY LANDSCAPE
12.1 COMPANY SHARE ANALYSIS: ASIA-PACIFIC
13 SWOT ANALYSIS
14 COMPANY PROFILE
14.1 ACCENTURE
14.1.1 COMPANY SNAPSHOT
14.1.2 REVENUE ANALYSIS
14.1.3 COMPANY SHARE ANALYSIS
14.1.4 SERVICE PORTFOLIO
14.1.5 RECENT DEVELOPMENTS
14.2 ORACLE
14.2.1 COMPANY SNAPSHOT
14.2.2 REVENUE ANALYSIS
14.2.3 COMPANY SHARE ANALYSIS
14.2.4 SOLUTION PORTFOLIO
14.2.5 RECENT DEVELOPMENTS
14.3 COGNIZANT
14.3.1 COMPANY SNAPSHOT
14.3.2 REVENUE ANALYSIS
14.3.3 COMPANY SHARE ANALYSIS
14.3.4 SOLUTION PORTFOLIO
14.3.5 RECENT DEVELOPMENT
14.4 INTEL CORPORATION
14.4.1 COMPANY SNAPSHOT
14.4.2 REVENUE ANALYSIS
14.4.3 COMPANY SHARE ANALYSIS
14.4.4 SOLUTION PORTFOLIO
14.4.5 RECENT DEVELOPMENTS
14.5 IBM
14.5.1 COMPANY SNAPSHOT
14.5.2 REVENUE ANALYSIS
14.5.3 COMPANY SHARE ANALYSIS
14.5.4 SOLUTION PORTFOLIO
14.5.5 RECENT DEVELOPMENTS
14.6 ACI WORLDWIDE
14.6.1 COMPANY SNAPSHOT
14.6.2 REVENUE ANALYSIS
14.6.3 SOLUTION PORTFOLIO
14.6.4 RECENT DEVELOPMENTS
14.7 BAE SYSTEMS
14.7.1 COMPANY SNAPSHOT
14.7.2 REVENUE ANALYSIS
14.7.3 SOLUTION PORTFOLIO
14.7.4 RECENT DEVELOPMENT
14.8 EXPERIAN INFORMATION SOLUTIONS, INC
14.8.1 COMPANY SNAPSHOT
14.8.2 REVENUE ANALYSIS
14.8.3 SOLUTION PORTFOLIO
14.8.4 RECENT DEVELOPMENTS
14.9 NICE
14.9.1 COMPANY SNAPSHOT
14.9.2 SOLUTION PORTFOLIO
14.9.3 RECENT DEVELOPMENTS
14.1 OPEN TEXT CORPORATION
14.10.1 COMPANY SNAPSHOT
14.10.2 REVENUE ANALYSIS
14.10.3 SOLUTION PORTFOLIO
14.10.4 RECENT DEVELOPMENTS
14.11 SANCTIONS.IO
14.11.1 COMPANY SNAPSHOT
14.11.2 SOLUTION PORTFOLIO
14.11.3 RECENT DEVELOPMENT
14.12 SAP SE
14.12.1 COMPANY SNAPSHOT
14.12.2 REVENUE ANALYSIS
14.12.3 SERVICE PORTFOLIO
14.12.4 RECENT DEVELOPMENTS
14.13 SAS INSTITUTE INC.
14.13.1 COMPANY SNAPSHOT
14.13.2 SOLUTION PORTFOLIO
14.13.3 RECENT DEVELOPMENTS
14.14 TEMENOS HEADQUARTERS SA
14.14.1 COMPANY SNAPSHOT
14.14.2 REVENUE ANALYSIS
14.14.3 PRODUCT PORTFOLIO
14.14.4 RECENT DEVELOPMENTS
14.15 TRULIOO
14.15.1 COMPANY SNAPSHOT
14.15.2 INDUSTRIES PORTFOLIO
14.15.3 RECENT DEVELOPMENTS
14.16 VIXIO REGULATORY INTELLIGENCE
14.16.1 COMPANY SNAPSHOT
14.16.2 SOLUTION PORTFOLIO
14.16.3 RECENT DEVELOPMENTS
14.17 WORKFUSION, INC
14.17.1 COMPANY SNAPSHOT
14.17.2 SOLUTION PORTFOLIO
14.17.3 RECENT DEVELOPMENTS
15 QUESTIONNAIRE
16 RELATED REPORTS
Tabellenverzeichnis
TABLE 1 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: REGULATIONS ON COUNTRY LEVEL
TABLE 2 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)
TABLE 3 ASIA-PACIFIC SOLUTION IN ANTI-MONEY LAUNDERING MARKET, BY REGION, 2022-2031 (USD THOUSAND)
TABLE 4 ASIA-PACIFIC SOLUTION IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 5 ASIA-PACIFIC SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY REGION, 2022-2031 (USD THOUSAND)
TABLE 6 ASIA-PACIFIC SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 7 ASIA-PACIFIC PROFESSIONAL SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 8 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)
TABLE 9 ASIA-PACIFIC COMPLIANCE MANAGEMENT IN ANTI-MONEY LAUNDERING MARKET, BY REGION, 2022-2031 (USD THOUSAND)
TABLE 10 ASIA-PACIFIC CUSTOMER IDENTITY MANAGEMENT IN ANTI-MONEY LAUNDERING MARKET, BY REGION, 2022-2031 (USD THOUSAND)
TABLE 11 ASIA-PACIFIC TRANSACTION MONITORING IN ANTI-MONEY LAUNDERING MARKET, BY REGION, 2022-2031 (USD THOUSAND)
TABLE 12 ASIA-PACIFIC CURRENCY TRANSACTION REPORTING IN ANTI-MONEY LAUNDERING MARKET, BY REGION, 2022-2031 (USD THOUSAND)
TABLE 13 ASIA-PACIFIC OTHERS IN ANTI-MONEY LAUNDERING MARKET, BY REGION, 2022-2031 (USD THOUSAND)
TABLE 14 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY DEPLOYMENT, 2022-2031 (USD THOUSAND)
TABLE 15 ASIA-PACIFIC CLOUD IN ANTI-MONEY LAUNDERING MARKET, BY REGION, 2022-2031 (USD THOUSAND)
TABLE 16 ASIA-PACIFIC ON-PREMISE IN ANTI-MONEY LAUNDERING MARKET, BY REGION, 2022-2031 (USD THOUSAND)
TABLE 17 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY ENTERPRISE SIZE, 2022-2031 (USD THOUSAND)
TABLE 18 ASIA-PACIFIC LARGE ENTERPRISES IN ANTI-MONEY LAUNDERING MARKET, BY REGION, 2022-2031 (USD THOUSAND
TABLE 19 ASIA-PACIFIC SMALL & MEDIUM ENTERPRISES IN ANTI-MONEY LAUNDERING MARKET, BY REGION, 2022-2031 (USD THOUSAND
TABLE 20 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY END USE, 2022-2031 (USD THOUSAND)
TABLE 21 ASIA-PACIFIC BANKS & FINANCIAL INSTITUTION IN ANTI-MONEY LAUNDERING MARKET, BY REGION, 2022-2031 (USD THOUSAND)
TABLE 22 ASIA-PACIFIC INSURANCE PROVIDERS IN ANTI-MONEY LAUNDERING MARKET, BY REGION, 2022-2031 (USD THOUSAND)
TABLE 23 ASIA-PACIFIC GOVERNMENT IN ANTI-MONEY LAUNDERING MARKET, BY REGION, 2022-2031 (USD THOUSAND)
TABLE 24 ASIA-PACIFIC GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY REGION, 2022-2031 (USD THOUSAND)
TABLE 25 ASIA-PACIFIC GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING TYPE, 2022-2031 (USD THOUSAND)
TABLE 26 ASIA-PACIFIC CASINO IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 27 ASIA-PACIFIC SPORTS BETTING IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 28 ASIA-PACIFIC GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)
TABLE 29 ASIA-PACIFIC LIVE ENTERTAINMENT/ONLINE IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 30 ASIA-PACIFIC OFFLINE/LAND BASED IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 31 ASIA-PACIFIC GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING ENTITY, 2022-2031 (USD THOUSAND)
TABLE 32 ASIA-PACIFIC OTHERS IN ANTI-MONEY LAUNDERING MARKET, BY REGION, 2022-2031 (USD THOUSAND)
TABLE 33 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY COUNTRY, 2022-2031 (USD THOUSAND)
TABLE 34 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)
TABLE 35 ASIA-PACIFIC SOLUTION IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)
TABLE 36 ASIA-PACIFIC SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)
TABLE 37 ASIA-PACIFIC PROFESSIONAL SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 38 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)
TABLE 39 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY DEPLOYMENT, 2022-2031 (USD THOUSAND)
TABLE 40 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY ENTERPRISE SIZE, 2022-2031 (USD THOUSAND)
TABLE 41 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY END USE, 2022-2031 (USD THOUSAND)
TABLE 42 ASIA-PACIFIC GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING TYPE, 2022-2031 (USD THOUSAND)
TABLE 43 ASIA-PACIFIC CASINO IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 44 ASIA-PACIFIC SPORTS BETTING IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 45 ASIA-PACIFIC GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)
TABLE 46 ASIA-PACIFIC LIVE ENTERTAINMENT/ONLINE IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 47 ASIA-PACIFIC OFFLINE/LAND BASED IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 48 ASIA-PACIFIC GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING ENTITY, 2022-2031 (USD THOUSAND)
TABLE 49 CHINA ANTI-MONEY LAUNDERING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)
TABLE 50 CHINA SOLUTION IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)
TABLE 51 CHINA SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)
TABLE 52 CHINA PROFESSIONAL SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 53 CHINA ANTI-MONEY LAUNDERING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)
TABLE 54 CHINA ANTI-MONEY LAUNDERING MARKET, BY DEPLOYMENT, 2022-2031 (USD THOUSAND)
TABLE 55 CHINA ANTI-MONEY LAUNDERING MARKET, BY ENTERPRISE SIZE, 2022-2031 (USD THOUSAND)
TABLE 56 CHINA ANTI-MONEY LAUNDERING MARKET, BY END USE, 2022-2031 (USD THOUSAND)
TABLE 57 CHINA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING TYPE, 2022-2031 (USD THOUSAND)
TABLE 58 CHINA CASINO IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 59 CHINA SPORTS BETTING IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 60 CHINA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)
TABLE 61 CHINA LIVE ENTERTAINMENT/ONLINE IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 62 CHINA OFFLINE/LAND BASED IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 63 CHINA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING ENTITY, 2022-2031 (USD THOUSAND)
TABLE 64 JAPAN ANTI-MONEY LAUNDERING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)
TABLE 65 JAPAN SOLUTION IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)
TABLE 66 JAPAN SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)
TABLE 67 JAPAN PROFESSIONAL SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 68 JAPAN ANTI-MONEY LAUNDERING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)
TABLE 69 JAPAN ANTI-MONEY LAUNDERING MARKET, BY DEPLOYMENT, 2022-2031 (USD THOUSAND)
TABLE 70 JAPAN ANTI-MONEY LAUNDERING MARKET, BY ENTERPRISE SIZE, 2022-2031 (USD THOUSAND)
TABLE 71 JAPAN ANTI-MONEY LAUNDERING MARKET, BY END USE, 2022-2031 (USD THOUSAND)
TABLE 72 JAPAN GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING TYPE, 2022-2031 (USD THOUSAND)
TABLE 73 JAPAN CASINO IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 74 JAPAN SPORTS BETTING IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 75 JAPAN GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)
TABLE 76 JAPAN LIVE ENTERTAINMENT/ONLINE IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 77 JAPAN OFFLINE/LAND BASED IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 78 JAPAN GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING ENTITY, 2022-2031 (USD THOUSAND)
TABLE 79 INDIA ANTI-MONEY LAUNDERING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)
TABLE 80 INDIA SOLUTION IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)
TABLE 81 INDIA SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)
TABLE 82 INDIA PROFESSIONAL SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 83 INDIA ANTI-MONEY LAUNDERING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)
TABLE 84 INDIA ANTI-MONEY LAUNDERING MARKET, BY DEPLOYMENT, 2022-2031 (USD THOUSAND)
TABLE 85 INDIA ANTI-MONEY LAUNDERING MARKET, BY ENTERPRISE SIZE, 2022-2031 (USD THOUSAND)
TABLE 86 INDIA ANTI-MONEY LAUNDERING MARKET, BY END USE, 2022-2031 (USD THOUSAND)
TABLE 87 INDIA CASINO IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 88 INDIA SPORTS BETTING IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 89 INDIA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)
TABLE 90 INDIA LIVE ENTERTAINMENT/ONLINE IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 91 INDIA OFFLINE/LAND BASED IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 92 INDIA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING ENTITY, 2022-2031 (USD THOUSAND)
TABLE 93 SOUTH KOREA ANTI-MONEY LAUNDERING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)
TABLE 94 SOUTH KOREA SOLUTION IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)
TABLE 95 SOUTH KOREA SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)
TABLE 96 SOUTH KOREA PROFESSIONAL SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 97 SOUTH KOREA ANTI-MONEY LAUNDERING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)
TABLE 98 SOUTH KOREA ANTI-MONEY LAUNDERING MARKET, BY DEPLOYMENT, 2022-2031 (USD THOUSAND)
TABLE 99 SOUTH KOREA ANTI-MONEY LAUNDERING MARKET, BY ENTERPRISE SIZE, 2022-2031 (USD THOUSAND)
TABLE 100 SOUTH KOREA ANTI-MONEY LAUNDERING MARKET, BY END USE, 2022-2031 (USD THOUSAND)
TABLE 101 SOUTH KOREA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING TYPE, 2022-2031 (USD THOUSAND)
TABLE 102 SOUTH KOREA CASINO IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 103 SOUTH KOREA SPORTS BETTING IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 104 SOUTH KOREA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)
TABLE 105 SOUTH KOREA LIVE ENTERTAINMENT/ONLINE IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 106 SOUTH KOREA OFFLINE/LAND BASED IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 107 SOUTH KOREA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING ENTITY, 2022-2031 (USD THOUSAND)
TABLE 108 AUSTRALIA ANTI-MONEY LAUNDERING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)
TABLE 109 AUSTRALIA SOLUTION IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)
TABLE 110 AUSTRALIA SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)
TABLE 111 AUSTRALIA PROFESSIONAL SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 112 AUSTRALIA ANTI-MONEY LAUNDERING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)
TABLE 113 AUSTRALIA ANTI-MONEY LAUNDERING MARKET, BY DEPLOYMENT, 2022-2031 (USD THOUSAND)
TABLE 114 AUSTRALIA ANTI-MONEY LAUNDERING MARKET, BY ENTERPRISE SIZE, 2022-2031 (USD THOUSAND)
TABLE 115 AUSTRALIA ANTI-MONEY LAUNDERING MARKET, BY END USE, 2022-2031 (USD THOUSAND)
TABLE 116 AUSTRALIA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING TYPE, 2022-2031 (USD THOUSAND)
TABLE 117 AUSTRALIA CASINO IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 118 AUSTRALIA SPORTS BETTING IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 119 AUSTRALIA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)
TABLE 120 AUSTRALIA LIVE ENTERTAINMENT/ONLINE IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 121 AUSTRALIA OFFLINE/LAND BASED IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 122 AUSTRALIA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING ENTITY, 2022-2031 (USD THOUSAND)
TABLE 123 SINGAPORE ANTI-MONEY LAUNDERING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)
TABLE 124 SINGAPORE SOLUTION IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)
TABLE 125 SINGAPORE SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)
TABLE 126 SINGAPORE PROFESSIONAL SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 127 SINGAPORE ANTI-MONEY LAUNDERING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)
TABLE 128 SINGAPORE ANTI-MONEY LAUNDERING MARKET, BY DEPLOYMENT, 2022-2031 (USD THOUSAND)
TABLE 129 SINGAPORE ANTI-MONEY LAUNDERING MARKET, BY ENTERPRISE SIZE, 2022-2031 (USD THOUSAND)
TABLE 130 SINGAPORE ANTI-MONEY LAUNDERING MARKET, BY END USE, 2022-2031 (USD THOUSAND)
TABLE 131 SINGAPORE GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING TYPE, 2022-2031 (USD THOUSAND)
TABLE 132 SINGAPORE CASINO IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 133 SINGAPORE SPORTS BETTING IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 134 SINGAPORE GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)
TABLE 135 SINGAPORE LIVE ENTERTAINMENT/ONLINE IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 136 SINGAPORE OFFLINE/LAND BASED IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 137 SINGAPORE GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING ENTITY, 2022-2031 (USD THOUSAND)
TABLE 138 THAILAND ANTI-MONEY LAUNDERING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)
TABLE 139 THAILAND SOLUTION IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)
TABLE 140 THAILAND SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)
TABLE 141 THAILAND PROFESSIONAL SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 142 THAILAND ANTI-MONEY LAUNDERING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)
TABLE 143 THAILAND ANTI-MONEY LAUNDERING MARKET, BY DEPLOYMENT, 2022-2031 (USD THOUSAND)
TABLE 144 THAILAND ANTI-MONEY LAUNDERING MARKET, BY ENTERPRISE SIZE, 2022-2031 (USD THOUSAND)
TABLE 145 THAILAND ANTI-MONEY LAUNDERING MARKET, BY END USE, 2022-2031 (USD THOUSAND)
TABLE 146 THAILAND GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING TYPE, 2022-2031 (USD THOUSAND)
TABLE 147 THAILAND CASINO IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 148 THAILAND SPORTS BETTING IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 149 THAILAND GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)
TABLE 150 THAILAND LIVE ENTERTAINMENT/ONLINE IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 151 THAILAND OFFLINE/LAND BASED IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 152 THAILAND GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING ENTITY, 2022-2031 (USD THOUSAND)
TABLE 153 INDONESIA ANTI-MONEY LAUNDERING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)
TABLE 154 INDONESIA SOLUTION IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)
TABLE 155 INDONESIA SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)
TABLE 156 INDONESIA PROFESSIONAL SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 157 INDONESIA ANTI-MONEY LAUNDERING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)
TABLE 158 INDONESIA ANTI-MONEY LAUNDERING MARKET, BY DEPLOYMENT, 2022-2031 (USD THOUSAND)
TABLE 159 INDONESIA ANTI-MONEY LAUNDERING MARKET, BY ENTERPRISE SIZE, 2022-2031 (USD THOUSAND)
TABLE 160 INDONESIA ANTI-MONEY LAUNDERING MARKET, BY END USE, 2022-2031 (USD THOUSAND)
TABLE 161 INDONESIA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING TYPE, 2022-2031 (USD THOUSAND)
TABLE 162 INDONESIA CASINO IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 163 INDONESIA SPORTS BETTING IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 164 INDONESIA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)
TABLE 165 INDONESIA LIVE ENTERTAINMENT/ONLINE IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 166 INDONESIA OFFLINE/LAND BASED IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 167 INDONESIA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING ENTITY, 2022-2031 (USD THOUSAND)
TABLE 168 MALAYSIA ANTI-MONEY LAUNDERING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)
TABLE 169 MALAYSIA SOLUTION IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)
TABLE 170 MALAYSIA SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)
TABLE 171 MALAYSIA PROFESSIONAL SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 172 MALAYSIA ANTI-MONEY LAUNDERING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)
TABLE 173 MALAYSIA ANTI-MONEY LAUNDERING MARKET, BY DEPLOYMENT, 2022-2031 (USD THOUSAND)
TABLE 174 MALAYSIA ANTI-MONEY LAUNDERING MARKET, BY ENTERPRISE SIZE, 2022-2031 (USD THOUSAND)
TABLE 175 MALAYSIA ANTI-MONEY LAUNDERING MARKET, BY END USE, 2022-2031 (USD THOUSAND)
TABLE 176 MALAYSIA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING TYPE, 2022-2031 (USD THOUSAND)
TABLE 177 MALAYSIA CASINO IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 178 MALAYSIA SPORTS BETTING IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 179 MALAYSIA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)
TABLE 180 MALAYSIA LIVE ENTERTAINMENT/ONLINE IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 181 MALAYSIA OFFLINE/LAND BASED IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 182 MALAYSIA GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING ENTITY, 2022-2031 (USD THOUSAND)
TABLE 183 PHILIPPINES ANTI-MONEY LAUNDERING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)
TABLE 184 PHILIPPINES SOLUTION IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)
TABLE 185 PHILIPPINES SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031(USD THOUSAND)
TABLE 186 PHILIPPINES PROFESSIONAL SERVICES IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 187 PHILIPPINES ANTI-MONEY LAUNDERING MARKET, BY FUNCTION, 2022-2031 (USD THOUSAND)
TABLE 188 PHILIPPINES ANTI-MONEY LAUNDERING MARKET, BY DEPLOYMENT, 2022-2031 (USD THOUSAND)
TABLE 189 PHILIPPINES ANTI-MONEY LAUNDERING MARKET, BY ENTERPRISE SIZE, 2022-2031 (USD THOUSAND)
TABLE 190 PHILIPPINES ANTI-MONEY LAUNDERING MARKET, BY END USE, 2022-2031 (USD THOUSAND)
TABLE 191 PHILIPPINES GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING TYPE, 2022-2031 (USD THOUSAND)
TABLE 192 PHILIPPINES CASINO IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 193 PHILIPPINES SPORTS BETTING IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 194 PHILIPPINES GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY APPLICATION, 2022-2031 (USD THOUSAND)
TABLE 195 PHILIPPINES LIVE ENTERTAINMENT/ONLINE IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 196 PHILIPPINES OFFLINE/LAND BASED IN ANTI-MONEY LAUNDERING MARKET, BY TYPE, 2022-2031 (USD THOUSAND)
TABLE 197 PHILIPPINES GAMING & GAMBLING IN ANTI-MONEY LAUNDERING MARKET, BY GAMBLING ENTITY, 2022-2031 (USD THOUSAND)
TABLE 198 REST OF ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY OFFERING, 2022-2031 (USD THOUSAND)
Abbildungsverzeichnis
FIGURE 1 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: SEGMENTATION
FIGURE 2 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: DATA TRIANGULATION
FIGURE 3 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: DROC ANALYSIS
FIGURE 4 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: ASIA-PACIFIC VS REGIONAL MARKET ANALYSIS
FIGURE 5 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: COMPANY RESEARCH ANALYSIS
FIGURE 6 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: INTERVIEW DEMOGRAPHICS
FIGURE 7 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: DBMR MARKET POSITION GRID
FIGURE 8 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: VENDOR SHARE ANALYSIS
FIGURE 9 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: MULTIVARIATE MODELING
FIGURE 10 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: OFFERING TIMELINE CURVE
FIGURE 11 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: MARKET END USE COVERAGE GRID
FIGURE 12 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: SEGMENTATION
FIGURE 13 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET
FIGURE 14 STRATEGIC DECISIONS
FIGURE 15 TWO SEGMENTS COMPRISE THE ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET, BY OFFERING (2023)
FIGURE 16 INCREASED FINANCIAL CRIMES DETECTION EFFORT IS EXPECTED TO DRIVE THE ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET DURING THE FORECAST PERIOD OF 2024 TO 2031
FIGURE 17 SOLUTION SEGMENT IS EXPECTED TO ACCOUNT FOR THE LARGEST SHARE OF THE ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET IN 2024 & 2031
FIGURE 18 USE TRANSACTION MONITORING OPERATIONS
FIGURE 19 DRIVERS, RESTRAINTS, OPPORTUNITIES, AND CHALLENGES OF EUROPE ANTI-MONEY LAUNDERING SOFTWARE MARKET
FIGURE 20 COMMON TYPES OF AML SOFTWARE
FIGURE 21 STAGES OF MONEY LAUNDERING IN GAMBLING
FIGURE 22 ADVANCED AML ANALYTICS
FIGURE 23 USING GRAPH ANALYTICS FOR ONLINE GAMBLING
FIGURE 24 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: BY OFFERING, 2023
FIGURE 25 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: BY FUNCTION, 2023
FIGURE 26 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: BY DEPLOYMENT, 2023
FIGURE 27 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: BY ENTERPRISE SIZE, 2023
FIGURE 28 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: BY END USE, 2023
FIGURE 29 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: SNAPSHOT (2023)
FIGURE 30 ASIA-PACIFIC ANTI-MONEY LAUNDERING MARKET: COMPANY SHARE 2023 (%)
Forschungsmethodik
Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.
Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.
Anpassung möglich
Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.