COVID-19 Impact on Pharmaceutical Packaging in Chemicals and Materials Industry

Forscher erforschen mithilfe von Deep Machine Learning die Bioaktivität von einer Million Molekülen

  • Unkategorisiert
  • 14. September 2021

Ein Forscherteam des Instituts für Strukturelle Bioinformatik und Netzwerkbiologie des IRB Barcelona hat ein Tool entwickelt, das die biologische Aktivität chemischer Verbindungen vorhersagt, was der Schlüssel zur Bewertung ihres therapeutischen Potenzials ist. Die Forscher verwendeten künstliche neuronale Netzwerke, um experimentelle Daten für eine Million Verbindungen zu erhalten, und entwickelten viele Tools zur Bewertung jedes Molekültyps. Das Team für Strukturelle Bioinformatik und Netzwerkbiologie unter der Leitung von Dr. Patrick Aloy, einem Forscher am ICREA, verwendete Deep-Machine-Learning-Computermodelle, um die Sammlung von Informationen zur biologischen Aktivität von über 1 Million Molekülen zu vervollständigen, und führte ein Tool ein, mit dem sich die biologische Aktivität beliebiger Moleküle vorhersagen lässt, selbst wenn keine experimentellen Daten verfügbar sind.

Diese neue Methode basiert auf dem Chemical Checker, der mit Abstand größten Datenbank mit Bioaktivitätsprofilen für gefälschte Arzneimittel, die vom selben Labor entwickelt und 2020 veröffentlicht wurde. Die Datenbank sammelt Informationen aus 25 bioaktiven Bereichen für jedes Molekül. Diese Bereiche stehen in Zusammenhang mit der chemischen Struktur des Moleküls, dem Ziel, mit dem es interagiert, und den Veränderungen, die es auf klinischer oder zellulärer Ebene verursacht. Bei den meisten Verbindungen sind diese detaillierten Informationen über den Wirkmechanismus jedoch unvollständig. Dies bedeutet, dass für eine bestimmte Verbindung möglicherweise ein oder zwei biologisch aktive Bereiche an Informationen verfügbar sind, aber nicht alle 25. Mit dieser neuen Entdeckung in der Entwicklung würden Forscher alle verfügbaren experimentellen Informationen mit Deep-Machine-Learning-Techniken vergleichen, um alle Aktivitätsprofile für alle Verbindungen zu vervollständigen, von der Chemie bis zur klinischen Ebene.

Mit dem neuen Tool können wir auch den biologischen Aktivitätsbereich neuer Moleküle vorhersagen, was für den Arzneimittelentdeckungsprozess von entscheidender Bedeutung ist, da wir die am besten geeigneten Kandidaten auswählen und diejenigen ausschließen können, die aus irgendeinem Grund nicht funktionieren.