Die optische Zeichenerkennung (OCR), eine bewährte Digitalisierungstechnik, wird häufig verwendet, um den Text in gescannten Dokumenten in eine durchsuchbare und bearbeitbare Form auf dem Computer umzuwandeln. Andere Dokumente wie Musikhandschriften und andere Arten von Manuskripten können damit jedoch nicht digitalisiert werden. Ein neuer Ansatz, der von einem Team der Bina Nusantara University in Jakarta, Indonesien, entwickelt wurde, verwendet Deep Machine Learning und ein Convolutional Neural Network, das darauf trainiert ist, die Nuancen der auf den Manuskripten geschriebenen Musiknotation zu erkennen.
Das System erfordert, dass Notenschlüssel, Notensystem und Tonart an der richtigen Stelle sind, aber diese können problemlos in einer Vorlage zugewiesen werden. Beim Konvertieren eines gescannten Manuskripts erkennt es die Position jeder Note auf dem Notensystem, um die Tonhöhe zu definieren. Im nächsten Schritt wird ein paralleler Algorithmus verwendet, um die Dauer jeder Note zu erkennen und die Position von Pausen, Stille und anderen ähnlichen Merkmalen in einem Manuskript zu identifizieren. Sobald es vollständig digitalisiert ist, ist es mit der aktuellen Software ein Kinderspiel, das Manuskript mit allen möglichen Instrumentalklängen auf dem Computer „abzuspielen“ oder sogar eine lyrische Partitur mit der Musik zu korrelieren und den Computer das Lied singen zu lassen. Wissenschaftler glauben, dass OMR, sobald es ausgereift ist, viele Anwendungen in der Musikdarbietung, der Musikausbildung und beim Archivieren von Musikmanuskriptarchiven haben wird. Das Team schlägt vor, dass ihr Ansatz es Entwicklern von Software-„Anwendungen“ ermöglichen könnte, ein Programm für Smartphones oder Tablets zu schreiben, mit dem beispielsweise jeder schnell eine Partitur scannen und OMR auf diesem Manuskript anwenden könnte.