Künstliche Intelligenz (KI) wird heute in fast allen Branchen eingesetzt, und die Menschen sind sehr stark auf maschinelles Lernen und künstliche Intelligenz angewiesen, da sie einen Großteil der Arbeitsbelastung verringern. Die Chipindustrie wächst sehr schnell, und ihre Produktion wächst ebenfalls sehr schnell, da viele Branchen sie in großem Maßstab einsetzen. Derzeit werden Computerchips mithilfe einer speziellen Technologie namens Atomlagenabscheidung (ALD) hergestellt, mit der Filme mit einer Dicke von nur einem Atom erzeugt werden können. Diese Technologie wird häufig zur Entwicklung von Halbleiterbauelementen eingesetzt, findet aber auch Anwendung in Lithiumbatterien, Solarzellen und anderen energiebezogenen Bereichen.
Heute verlassen sich Hersteller bei der Herstellung neuer Filmarten zunehmend auf ALD, aber es braucht Zeit, um herauszufinden, wie der Prozess für jedes neue Material fein abgestimmt werden kann. Ein Teil des Problems besteht darin, dass Forscher in erster Linie Versuch und Irrtum anwenden, um optimale Wachstumsbedingungen zu bestimmen. Eine kürzlich veröffentlichte Studie, eine der ersten in diesem wissenschaftlichen Bereich, legt jedoch nahe, dass der Einsatz künstlicher Intelligenz (KI) möglicherweise effizienter ist. In der ACS Applied Materials and Interfaces-Studie beschreiben Forscher des Argonne National Laboratory des USD Department of Energy (DOE) mehrere KI-basierte Ansätze zur autonomen Optimierung von AML-Prozessen. Ihre Arbeit beschreibt die relativen Stärken und Schwächen jedes Ansatzes sowie Erkenntnisse, die genutzt werden können, um neue Prozesse effizienter und wirtschaftlicher zu entwickeln. „Alle diese Algorithmen bieten eine viel schnellere Möglichkeit, optimale Kombinationen zu finden, da Sie keine Zeit damit verschwenden, eine Probe in den Reaktor zu geben, sie herauszunehmen, Messungen durchzuführen usw., wie Sie es heute normalerweise tun würden, eine Echtzeitschleife, die mit dem Reaktor verbunden ist“, sagte Angel YanguasGil, leitender Materialwissenschaftler bei Argonne und Mitautor der Studie.