Überblick

Die Automobilindustrie befindet sich im Wandel, angetrieben von Fortschritten in den Bereichen künstliche Intelligenz (KI) und maschinelles Lernen (ML). KI und ML haben den Weg für sicherere und intelligentere Autos geebnet und bieten innovative Lösungen, die die Fahrzeugleistung steigern, die Sicherheitsfunktionen verbessern und das Fahrerlebnis revolutionieren. KI und ML finden ihre Anwendung in der gesamten Automobil-Wertschöpfungskette. Derzeit werden sie in der Automobilherstellung implementiert, einschließlich Design, Lieferkette, Produktion und Nachbearbeitung. KI und ML werden in Fahrerassistenz- und Fahrerrisikobewertungssystemen implementiert; dies verändert die Art und Weise, wie Transport funktioniert. KI verändert auch Aftermarket-Dienste wie vorausschauende Wartung und Versicherung. Der Einsatz von maschinellem Lernen in der Automobilindustrie hat neue intelligente Produkte und optimierte Arbeitsweisen hervorgebracht. Diese Fallstudie konzentriert sich auf Data Bridge Market Research (DBMR), ein führendes Marktforschungsberatungsunternehmen, und seine Rolle bei der Unterstützung eines Kunden bei der Nutzung von KI und ML zum Bau sichererer und intelligenterer Autos.

Künstliche Intelligenz (KI) wird derzeit in herkömmlicher Software wie Autodesk und vielen anderen häufig verwendet. KI bietet hochdimensionale Funktionen, mit denen mehrere Designstudien durchgeführt werden können. Der Einsatz von KI beginnt bereits in der Entwicklungsphase eines neuen Autos. Durch den Einsatz von erweiterter und virtueller Realität ist es möglich, bessere Designideen zu entwickeln und Fehler zu beheben, bevor sie teuer werden. Ein intelligentes System kann viele Designideen für zukünftige Autoteile und -modelle liefern, und Automobilunternehmen können die besten auswählen.

Kundenhintergrund:

Der Kunde war ein namhafter Automobilhersteller, der an der Spitze des technologischen Fortschritts bleiben wollte. Der Kunde erkannte das Potenzial von KI und ML bei der Transformation der Automobilindustrie und wollte diese Technologien in seine Fahrzeuge integrieren, um die Sicherheit zu erhöhen, die Leistung zu optimieren und den sich entwickelnden Anforderungen der Verbraucher gerecht zu werden.

Herausforderungen für den Kunden:

Der Kunde stand bei der Implementierung von KI- und ML-Technologien in seinen Autos vor mehreren Herausforderungen, darunter:

  • Identifizierung der effektivsten Anwendungsfälle für die Integration von KI und ML zur Verbesserung der Fahrzeugsicherheit
  • Überwinden von Herausforderungen hinsichtlich Datenqualität und -verfügbarkeit für das Training von KI- und ML-Modellen
  • Sicherstellung der Einhaltung gesetzlicher Vorschriften und Behebung von Sicherheitsbedenken im Zusammenhang mit KI-gesteuerten Funktionen
  • Die Komplexität der Integration von KI- und ML-Technologien in bestehende Fahrzeugarchitekturen meistern
  • Wollten Sie mehr über den Total Addressable Market (TAM) der Automobilindustrie im Bereich KI und ML auf globaler Ebene und in verschiedenen Regionen wie Asien-Pazifik, Nordamerika, Europa, dem Nahen Osten und Afrika sowie Südamerika erfahren?
  • Wollte mehr über die Auswahlkriterien für Lieferanten erfahren und wie das Unternehmen einen Lieferanten auswählen kann. Welche Hinweise sollte der Kunde bei der Auswahl des Lieferanten beachten?
  • Bewertung der Auswirkungen von KI und ML auf bestehende Geschäftsmodelle und Kundenpräferenzen
  • Identifizierung von Möglichkeiten zur Nutzung von KI-Algorithmen und maschinellem Lernen für autonome Fahrfunktionen. Zukünftige Wachstumsrate für den erforderlichen Markt

Der Kunde wandte sich an Data Bridge Market Research, um diese Herausforderungen anzugehen und das aktuelle Szenario von KI und ML auf dem Automobilmarkt zu verstehen. Data Bridge Market Research ist ein vertrauenswürdiges Marktforschungsberatungsunternehmen, das für seine Expertise in neuen Technologien bekannt ist. Darüber hinaus wollte der Kunde mehr über die aktuellen Trends und Technologien erfahren und eine detaillierte Studie der wichtigsten Akteure durchführen, die auf dem Automobilmarkt Fuß fassen, damit er sein Geschäft entsprechend ausbauen kann. DBMR sollte eine umfassende Analyse der Marktlandschaft durchführen, relevante Trends identifizieren und umsetzbare Erkenntnisse liefern, um die KI- und ML-Implementierungsstrategie des Kunden zu leiten.

DBMR-Marktforschungsansatz zur Bewältigung der Kundenherausforderung

DBMR hat zur Unterstützung des Kunden den folgenden Ansatz gewählt:

  • Marktanalyse: DBMR führte eine umfassende Analyse der Automobilindustrie durch und untersuchte Markttrends, Wettbewerbsanalysen und Kundenpräferenzen. Diese Analyse lieferte wertvolle Einblicke in die potenziellen Anwendungen von KI und ML beim Bau sichererer und intelligenterer Autos
  • Identifizierung von Anwendungsfällen: In enger Zusammenarbeit mit den Stakeholdern des Kunden identifizierte DBMR spezifische Anwendungsfälle, in denen KI und ML die Fahrzeugsicherheit erheblich verbessern könnten. Diese Anwendungsfälle reichten von fortschrittlichen Fahrerassistenzsystemen (ADAS) über vorausschauende Wartung bis hin zu intelligenten Navigationssystemen
  • Datenanalyse und Modellentwicklung: DBMR half dem Kunden, Herausforderungen hinsichtlich Datenqualität und -verfügbarkeit zu überwinden, indem es die vorhandenen Datenquellen analysierte und Strategien zur Erfassung und Kuratierung hochwertiger Daten für das Training von KI- und ML-Modellen empfahl. DBMR half auch bei der Entwicklung maßgeschneiderter KI- und ML-Modelle, die auf die spezifischen Anwendungsfälle des Kunden zugeschnitten waren.
  • Sicherheit und Einhaltung gesetzlicher Vorschriften: DBMR analysierte gründlich die Sicherheitsvorschriften und -standards, die für KI-gesteuerte Automobilfunktionen gelten. Diese Bewertung stellte sicher, dass die KI- und ML-Implementierungen des Kunden die erforderlichen Sicherheitsanforderungen erfüllten, potenzielle Risiken berücksichtigten und das Vertrauen der Verbraucher sicherten.
  • Wettbewerbsanalyse: Um in der Automobilindustrie wettbewerbsfähig zu bleiben, benötigte der Kunde eine gründliche Marktanteilsanalyse und eine strategische Entwicklungsanalyse. Der Kunde wollte, dass DBMR seine aktuelle Position auf dem Markt bewertet, seine Stärken und Schwächen identifiziert und die Strategien seiner Konkurrenten bewertet. Diese Analyse würde dem Kunden helfen, wirksame Geschäftsstrategien zu entwickeln, um sich abzuheben, Wachstumschancen zu erkennen und einen Wettbewerbsvorteil zu erlangen.
  • Kriterien für die Lieferantenauswahl: Der Kunde benötigte Unterstützung bei der Auswahl zuverlässiger Lieferanten, um hochwertige Zusatzstoffe für die Kostenprozessoptimierung zu beschaffen. Er wollte, dass DBMR ihm bei der Definition der Lieferantenauswahlkriterien auf der Grundlage von Qualität, Zuverlässigkeit, Preisgestaltung und Lieferfähigkeit hilft. Der Kunde erwartete, dass DBMR ihm beim Aufbau einer Wertschöpfungskette hilft, indem es vertrauenswürdige Lieferanten identifiziert, die die Anforderungen des Kunden konsequent erfüllen können.

Empfehlungen und Umsetzung

Basierend auf den Ergebnissen der Marktforschung unterbreitete Data Bridge Market Research dem Kunden eine Reihe von Empfehlungen, darunter

  • Integrations-Roadmap: DBMR entwickelte eine umfassende Implementierungs-Roadmap, die die erforderlichen Schritte zur Integration von KI- und ML-Technologien in die Fahrzeugproduktionsprozesse des Kunden skizziert. Die Roadmap berücksichtigte Faktoren wie Datenerfassung, Modellentwicklung, Hardwareintegration und Softwarevalidierung.
  • Partnerschaften und Talentakquise: DBMR unterstützte den Kunden bei der Identifizierung strategischer Partnerschaften mit Anbietern von KI- und ML-Technologien und empfahl mögliche Kooperationen mit Forschungseinrichtungen oder Start-ups. Darüber hinaus beriet DBMR den Kunden bei Strategien zur Talentakquise, um den Zugang zu dem für eine erfolgreiche KI- und ML-Integration erforderlichen Fachwissen sicherzustellen.
  • Testen und Validieren: DBMR unterstützte den Kunden bei der Entwicklung strenger Testprotokolle und Validierungsverfahren für KI- und ML-Funktionen. Dies stellte die Funktionalität, Zuverlässigkeit und Sicherheit KI-gesteuerter Systeme vor dem Einsatz in Serienfahrzeugen sicher.

Ergebnisse und geschäftliche Auswirkungen

Die Umsetzung der Empfehlungen von DBMR brachte für den Kunden bedeutende Ergebnisse:

  • Verbesserte Sicherheitsfunktionen: Durch die Integration von KI- und ML-Technologien verbesserte der Kunde die Sicherheitsfunktionen seines Fahrzeugs, darunter fortschrittliche Fahrerassistenzsysteme (ADAS), die potenzielle Gefahren in Echtzeit erkennen und darauf reagieren konnten. Dies führte zu weniger Unfällen, verbesserter Verkehrssicherheit und erhöhtem Vertrauen der Fahrer
  • Optimierte Leistung: Die Fahrzeuge des Kunden erfuhren durch KI- und ML-gesteuerte Optimierungsalgorithmen eine verbesserte Leistung und Kraftstoffeffizienz. Diese Algorithmen optimierten Fahrzeugsysteme auf der Grundlage von Echtzeitdaten und Fahrbedingungen wie Motorleistung, Getriebe und Aerodynamik
  • Personalisiertes Benutzererlebnis: KI- und ML-Technologien ermöglichten es dem Kunden, personalisierte Benutzererlebnisse bereitzustellen, indem er Fahrerverhalten, Präferenzen und historische Daten analysierte. Dies führte zu maßgeschneiderten Funktionen, intelligenten Infotainmentsystemen und einer nahtlosen Integration mit Mobilgeräten
  • Wettbewerbsvorteil: Durch den effektiven Einsatz von KI- und ML-Technologien erlangte der Kunde einen Wettbewerbsvorteil in der Automobilindustrie. Er positionierte sich als führendes Unternehmen beim Bau sicherer und intelligenterer Autos, zog technisch versierte Kunden an und differenzierte seine Marke von der Konkurrenz.

Abschluss:

Data Bridge Market Research spielte eine wichtige Rolle bei der Förderung des Geschäftswachstums des Kunden, indem es KI- und ML-Technologien strategisch einsetzte. Die Autohersteller wollen nun KI und ML nutzen, um Kosten zu senken, Produkte zu optimieren, die Effizienz zu verbessern, Entwicklungszyklen zu beschleunigen und ein nachhaltigeres Ökosystem zu schaffen. DBMR hilft dem Kunden, indem es umfassende Marktforschung durchführt, wertvolle Erkenntnisse liefert und bei der Umsetzung hilft. DBMR ermöglichte es dem Kunden, virtuelle Assistenten und autonome Fahrfunktionen effektiv zu nutzen. Diese Fallstudie zeigt die positiven Ergebnisse der Nutzung spezialisierter Marktforschungs- und Beratungsdienste. Infolgedessen erreichte der Kunde verbesserte Benutzererlebnisse, erweiterte autonome Fahrfunktionen und erweiterte Geschäftsmöglichkeiten und festigte so seine Position als Marktführer in der sichereren, dynamischeren Branche für virtuelle Assistenten und selbstfahrende Autos.

Erhalten Sie sofortigen Zugriff

Kontaktiere uns