Überblick
Durch den Einsatz von Algorithmen statt Menschen zur Erstellung von Lernmodellen trägt automatisiertes maschinelles Lernen (AML) dazu bei, zahlreiche sich wiederholende und langwierige Prozesse zu reduzieren, darunter Parameterauswahl und Datenbereinigung. Der Prozess der Formulierung und Prüfung von Hypothesen wird dank maschinellem Lernen, einer Komponente der Datenwissenschaft, fortgesetzt. Das Ziel von autoML besteht darin, diese Prozesse zu automatisieren, um den optimalen Algorithmus innerhalb der Palette der verfügbaren Funktionen, Algorithmen und Hyperparameter zu finden. Die intelligente Automatisierung sich wiederholender Prozesse im ML-Workflow wird durch autoML voraussichtlich erleichtert. Dadurch können hochwertige Ressourcen von monotoner Arbeit auf die Analyse und Bewertung der leistungsstärksten Modelle umsteigen, die einen Mehrwert bieten. Dadurch wird die Zeit, die zur Erstellung von Modellen und darauf basierenden Lösungen benötigt wird, erheblich reduziert.
Obwohl AutoML-Systeme in der Lage sind, prädiktive Modelle schnell genug zu erstellen, um eine nahezu optimale Leistung zu erzielen, ist ihre Reichweite noch begrenzt und ihr volles Versprechen bleibt unerfüllt. Obwohl AutoML bei der Entwicklung und Datenaufbereitung immer häufiger zum Einsatz kommt, gibt es immer noch einige stark domänenabhängige Anwendungen, bei denen es eher eine Kunst als eine Entwicklung ist. AutoML wird eine bedeutende Rolle bei der Beschleunigung der Einführung ML-basierter Lösungen spielen, da es sich um ein aktives Forschungsthema handelt, das große Fortschritte macht (wobei mehrere Akteure bestehende Herausforderungen bei der Automatisierung des gesamten Modellentwicklungsprozesses angehen).
Herausforderungen für den Kunden
Der Kunde wollte die Chancen und Herausforderungen im Zusammenhang mit automatisiertem maschinellem Lernen (AML) analysieren. Das Hauptziel des Kunden besteht darin, sein Lösungsangebot an die künftigen Kundenanforderungen anzupassen, um bessere Entscheidungen zu treffen, Kosten zu senken, die Effizienz zu steigern und Innovationen voranzutreiben und sich einen Wettbewerbsvorteil zu verschaffen, indem er an der Spitze des technologischen Fortschritts bleibt.
Nachfolgend sind die vom Kunden gestellten Anforderungen aufgeführt:
DBMR-Ansatz/Forschungsmethodik
DBMR führte eine umfassende Analyse der Marktlandschaft durch, identifizierte relevante Trends und lieferte umsetzbare Erkenntnisse zur Orientierung des Kunden. Wir folgten dem Dreibeinmodell zur Analyse und Validierung von Daten, um wertvolle Erkenntnisse basierend auf den Kundenanforderungen zu liefern. Der Ansatz oder die Forschungsmethodik von DBMR zur Analyse und Schätzung des automatisierten maschinellen Lernens (AML) wird im Folgenden erläutert:
Unser Ansatz beinhaltet die Verwendung sowohl primärer als auch sekundärer Forschungsmethoden zur Schätzung, Analyse und Validierung der Daten.
DBMR führte Sekundär- und Primärforschung für Top-down- und Bottom-up-Methoden zur Datenanalyse und -validierung durch. Dieser Ansatz wurde genutzt, um sowohl qualitative als auch quantitative Daten für jedes der genannten Segmente auf globaler, regionaler und Länderebene abzurufen.
Zur Analyse der Kundenanforderungen wurde die obige Methodik verwendet:
Durch Befolgen des oben beschriebenen Ansatzes wurden dem Kunden entsprechende Markteinblicke gewährt.
Geschäftslösungen
Im Folgenden sind die Lösungen aufgeführt, die bei der Analyse des Marktes für Lösungen zum automatisierten maschinellen Lernen (AML) bereitgestellt werden:
Auswirkungen auf das Geschäft
Der Kunde hatte einen klaren Einblick in die Marktwettbewerbsfähigkeit, die bevorstehende technologische Implementierung und die strategischen Schritte/Pläne, die ihm helfen werden, prominente Endbenutzer in verschiedenen Ländern zu bedienen. Das Unternehmen hat seine Konversionsraten durch sein neuestes automatisiertes Angebot verbessert, das an verschiedenen Punkten der Käuferreise die effektivste Lösung bietet.
Abschluss
Data Bridge Market Research hat detaillierte Einblicke in den Markt für automatisiertes maschinelles Lernen (AML) bereitgestellt, um allen Anforderungen gerecht zu werden. Darüber hinaus helfen die sachlichen und konsolidierten Informationen des Berichts dem Kunden, das Wachstum des Unternehmens in Bezug auf die Technologiedurchdringung zu bewerten und können auch für die Entscheidungsfindung und Zukunftsplanung weiter genutzt werden. Abgesehen davon kann der Kunde sogar auf die Geschäftsmöglichkeiten aus den Informationen des Berichts zugreifen/sie nutzen.