Überblick

Durch den Einsatz von Algorithmen statt Menschen zur Erstellung von Lernmodellen trägt automatisiertes maschinelles Lernen (AML) dazu bei, zahlreiche sich wiederholende und langwierige Prozesse zu reduzieren, darunter Parameterauswahl und Datenbereinigung. Der Prozess der Formulierung und Prüfung von Hypothesen wird dank maschinellem Lernen, einer Komponente der Datenwissenschaft, fortgesetzt. Das Ziel von autoML besteht darin, diese Prozesse zu automatisieren, um den optimalen Algorithmus innerhalb der Palette der verfügbaren Funktionen, Algorithmen und Hyperparameter zu finden. Die intelligente Automatisierung sich wiederholender Prozesse im ML-Workflow wird durch autoML voraussichtlich erleichtert. Dadurch können hochwertige Ressourcen von monotoner Arbeit auf die Analyse und Bewertung der leistungsstärksten Modelle umsteigen, die einen Mehrwert bieten. Dadurch wird die Zeit, die zur Erstellung von Modellen und darauf basierenden Lösungen benötigt wird, erheblich reduziert.

Obwohl AutoML-Systeme in der Lage sind, prädiktive Modelle schnell genug zu erstellen, um eine nahezu optimale Leistung zu erzielen, ist ihre Reichweite noch begrenzt und ihr volles Versprechen bleibt unerfüllt. Obwohl AutoML bei der Entwicklung und Datenaufbereitung immer häufiger zum Einsatz kommt, gibt es immer noch einige stark domänenabhängige Anwendungen, bei denen es eher eine Kunst als eine Entwicklung ist. AutoML wird eine bedeutende Rolle bei der Beschleunigung der Einführung ML-basierter Lösungen spielen, da es sich um ein aktives Forschungsthema handelt, das große Fortschritte macht (wobei mehrere Akteure bestehende Herausforderungen bei der Automatisierung des gesamten Modellentwicklungsprozesses angehen).

Herausforderungen für den Kunden

Der Kunde wollte die Chancen und Herausforderungen im Zusammenhang mit automatisiertem maschinellem Lernen (AML) analysieren. Das Hauptziel des Kunden besteht darin, sein Lösungsangebot an die künftigen Kundenanforderungen anzupassen, um bessere Entscheidungen zu treffen, Kosten zu senken, die Effizienz zu steigern und Innovationen voranzutreiben und sich einen Wettbewerbsvorteil zu verschaffen, indem er an der Spitze des technologischen Fortschritts bleibt.

Nachfolgend sind die vom Kunden gestellten Anforderungen aufgeführt:

  • Gesamtgröße des adressierbaren Marktes (TAM) und jährliche Wachstumsrate auf regionaler und Länderebene
  • Aktuelle und zukünftige technologische Trends sowie die Herausforderungen bei der Umsetzung
  • Vergleichende Unternehmensanalyse sowohl führender als auch aufstrebender Akteure, einschließlich Marktanteil, nachverfolgbarer Umsatz, strategischer Initiativen, technologischer Übernahme, Kriterien für die Lieferantenauswahl und mehr
  • Anlagestrategie und Finanzierung durch verschiedene Akteure
  • Marktchancen und Attraktivitätsbewertung
  • Neue Anwendungen des automatisierten maschinellen Lernens (AML)
  • Regulatorische Anforderungen und Compliance auf Länderebene

DBMR-Ansatz/Forschungsmethodik

DBMR führte eine umfassende Analyse der Marktlandschaft durch, identifizierte relevante Trends und lieferte umsetzbare Erkenntnisse zur Orientierung des Kunden. Wir folgten dem Dreibeinmodell zur Analyse und Validierung von Daten, um wertvolle Erkenntnisse basierend auf den Kundenanforderungen zu liefern. Der Ansatz oder die Forschungsmethodik von DBMR zur Analyse und Schätzung des automatisierten maschinellen Lernens (AML) wird im Folgenden erläutert:

Unser Ansatz beinhaltet die Verwendung sowohl primärer als auch sekundärer Forschungsmethoden zur Schätzung, Analyse und Validierung der Daten.

DBMR führte Sekundär- und Primärforschung für Top-down- und Bottom-up-Methoden zur Datenanalyse und -validierung durch. Dieser Ansatz wurde genutzt, um sowohl qualitative als auch quantitative Daten für jedes der genannten Segmente auf globaler, regionaler und Länderebene abzurufen.

  • Sekundärforschung bestehend aus Daten, die von verschiedenen Regierungsverbänden veröffentlicht wurden, zertifizierten Veröffentlichungen, Investorenpräsentationen, bei der SEC eingereichten Jahresberichten, der Unternehmenswebsite, Zeitschriften, Whitepapers und Artikeln von anerkannten Autoren und anderen
  • Die Primärforschung umfasst ausführliche Interviews mit verschiedenen primären Befragten per Kaltakquise, LinkedIn, E-Mail und anderen Kanälen, mit wichtigen Branchenteilnehmern, Fachexperten (KMU), C-Level-Führungskräften wichtiger Marktteilnehmer und Branchenberatern, um sowohl qualitative als auch quantitative Informationen zu validieren. Dies wird grundsätzlich von unserem engagierten Primärteam und Einzelpersonen (Dritten) durchgeführt, die vor Ort anwesend sind. Darüber hinaus erstellen wir sogar einen umfassenden Fragebogen und einen Diskussionsleitfaden, der sowohl strukturierte als auch unstrukturierte Datenpunkte enthält, um einen diskussionsbasierten Ansatz durchzuführen

Zur Analyse der Kundenanforderungen wurde die obige Methodik verwendet:

  • Die Marktgröße wurde unter Berücksichtigung sowohl eines Top-Down- als auch eines Bottom-Up-Ansatzes ermittelt
  • Wettbewerbsanalyse: Unternehmensanalyse basierend auf nachverfolgbarem Umsatz, Lösungsangeboten, Stärken und Schwächen, Marktanteilen, geografischer Reichweite, strategischen Initiativen sowie Investitionen und Finanzierungen, um u. a. wichtige Anbieter, potenzielle Anbieter, Marktstörer und Nischenanbieter zu identifizieren und so Wettbewerbsvorteile zu erlangen.
  • Faktoren wie Treiber, Beschränkungen, Chancen und Herausforderungen, die den Gesamtmarkt beeinflussen, wurden ebenfalls untersucht
  • Auswirkungen sowohl interner als auch externer Faktoren, nämlich Kompatibilitäts- und Komplexitätsprobleme, Vorhandensein von Ersatztechnologien, regulatorisches Umfeld und Zusammenarbeit, COVID-19 und der Krieg zwischen Russland und der Ukraine auf sowohl die Nachfrage- als auch die Angebotsseite
  • Außerdem wurde eine gründliche Bewertung der regulatorischen Landschaft sowie eine eingehende Untersuchung zur Analyse potenzieller Kunden für diesen Markt durchgeführt. Darüber hinaus hilft uns die enge Zusammenarbeit mit den Stakeholdern des Kunden, spezifische Anwendungen oder Anwendungsfälle zu identifizieren, für die dieser Markt einen erheblichen Mehrwert bieten könnte.

Durch Befolgen des oben beschriebenen Ansatzes wurden dem Kunden entsprechende Markteinblicke gewährt.

Geschäftslösungen

Im Folgenden sind die Lösungen aufgeführt, die bei der Analyse des Marktes für Lösungen zum automatisierten maschinellen Lernen (AML) bereitgestellt werden:

  • Marktgröße und CAGR der Automated Machine Learning (AML)-Lösung auf globaler, regionaler und Länderebene wurden bereitgestellt, um das Marktpotenzial für jedes Segment zu verstehen
  • Auf Länderebene wurde eine detaillierte Analyse des automatisierten maschinellen Lernens (AML) zusammen mit seinen Implementierungstrends wie Datennormalisierung, Datenbereinigung und Datentransformation bereitgestellt. AML hilft bei der Kostenminimierung, schnelleren Ergebnissen (Datenanalyse) und Entscheidungsfindung, rationalisierten Abläufen mit verbesserter Leistung und mehr Wettbewerbsvorteilen.
  • Es wurden vergleichende Unternehmensanalysen hinsichtlich Unternehmensprofilierung, Positionierungs- und Anwendungsraster, Unternehmenslandschaft, SWOT, strategischer Initiativen und mehr durchgeführt, um die Marktkonkurrenz zu identifizieren und Wettbewerbsvorteile zu erlangen.
  • Darüber hinaus wurden Einblicke in technologische Fortschritte wie Cloud-basiertes Computing, KI, Robotik und andere sowie andere Marktchancen und -herausforderungen gegeben, die sich auf den Gesamtmarkt auswirken. Es wurde festgestellt, dass das Cloud-Modell leichter zugänglich, skalierbarer und flexibler ist als das On-Premise-Modell. Darüber hinaus ist dies ein kostengünstiges Modell, da es ein Pay-as-you-go-Modell bietet und daher für jede Organisation, insbesondere kleine und mittlere Unternehmen, sehr hilfreich sein wird.
  • In Bezug auf die regionale Ausdehnung weist Nordamerika den größten Marktanteil auf, da dort führende Unternehmen ansässig sind, die den Bedarf an der Bereitstellung von maschinellem Lernen in mehreren Endverbraucherbranchen, darunter BFSI, Gesundheitswesen und Einzelhandel, decken.

Auswirkungen auf das Geschäft

Der Kunde hatte einen klaren Einblick in die Marktwettbewerbsfähigkeit, die bevorstehende technologische Implementierung und die strategischen Schritte/Pläne, die ihm helfen werden, prominente Endbenutzer in verschiedenen Ländern zu bedienen. Das Unternehmen hat seine Konversionsraten durch sein neuestes automatisiertes Angebot verbessert, das an verschiedenen Punkten der Käuferreise die effektivste Lösung bietet.

Abschluss

Data Bridge Market Research hat detaillierte Einblicke in den Markt für automatisiertes maschinelles Lernen (AML) bereitgestellt, um allen Anforderungen gerecht zu werden. Darüber hinaus helfen die sachlichen und konsolidierten Informationen des Berichts dem Kunden, das Wachstum des Unternehmens in Bezug auf die Technologiedurchdringung zu bewerten und können auch für die Entscheidungsfindung und Zukunftsplanung weiter genutzt werden. Abgesehen davon kann der Kunde sogar auf die Geschäftsmöglichkeiten aus den Informationen des Berichts zugreifen/sie nutzen.

Erhalten Sie sofortigen Zugriff

Kontaktiere uns