Artikel

19. Dezember 2022

Transformation der Arzneimittelentdeckung durch künstliche Intelligenz

In letzter Zeit nimmt der Einsatz künstlicher Intelligenz (KI) rasant zu. In fast allen Bereichen nimmt der Einsatz von KI zu. Mit ihrer Anpassung laufen viele Dinge reibungsloser. Da der Hype um KI zugenommen hat, bemühen sich große Marktteilnehmer und Händler, die Verwendung von KI in ihren Produkten und Dienstleistungen zu bewerben. Künstliche Intelligenz ist die Nachbildung menschlicher Intelligenzprozesse durch Maschinen, hauptsächlich durch Computersysteme. Normalerweise ist das, was sie als KI bezeichnen, einfach eine Komponente der KI, wie z. B. maschinelles Lernen. KI erfordert eine Kombination aus Hardware und Software zum Schreiben und Trainieren von Algorithmen für maschinelles Lernen. Einige KI-ähnliche Programmiersprachen wie Python, R und Java sind beliebt.

Unser DBMR-Team hat den Markt für Operationalisierungssoftware für maschinelles Lernen untersucht und festgestellt, dass Nordamerika den Markt für Operationalisierungssoftware für maschinelles Lernen im Prognosezeitraum 2022–2029 dominiert und seinen Dominanztrend im Prognosezeitraum aufgrund der Präsenz wichtiger Schlüsselakteure und der Zunahme technischer Innovationen in dieser Region weiter ausbauen wird. Für den Prognosezeitraum 2022–2029 wird für den Markt eine durchschnittliche jährliche Wachstumsrate (CAGR) von 44,7 % erwartet.

Um mehr über die Studie zu erfahren, besuchen Sie bitte: https://www.databridgemarketresearch.com/de/reports/global-machine-learning-operationalization-software-market

Geschichte der KI

Obwohl KI in jüngster Zeit aufgrund größerer Datenmengen, fortschrittlicher Algorithmen sowie Verbesserungen bei Rechenleistung und Speicherkapazität an Bedeutung gewonnen hat, wurde der Begriff bereits 1956 eingeführt. Damals beschäftigte man sich mit Themen wie Problemlösung und symbolischen Methoden. In den 1960er Jahren interessierte sich das US-Verteidigungsministerium ernsthaft für dieses Feld und begann, Computer darauf zu trainieren, grundlegende menschliche Denkprozesse nachzuahmen. So schloss die Defense Advanced Research Projects Agency (DARPA) beispielsweise in den 1970er Jahren die Straßenkartierungsprojekte ab. Diese frühen Arbeiten ebneten den Weg für die Automatisierung und das formale Denken, die heute in Computern sichtbar sind, darunter Entscheidungsunterstützungssysteme und intelligente Suchsysteme, die menschliche Fähigkeiten ergänzen und verbessern sollen.

Wie KI unsere Welt verändert

KI bereichert unser Leben mit erheblichen Vorteilen wie Online-Suchvorschlägen, Chatbots, Sprachassistenten und vielem mehr. Mit jedem Tag wird sie zu einem integralen Bestandteil unseres Lebens. KI wird in Zukunft enorme Vorteile bringen, da sie zu höheren Produktionsraten und höherer Produktivität in verschiedenen Sektoren führen wird. In der Gegenwart und auch in naher Zukunft ist die Automatisierung durch künstliche Intelligenz zeitaufwändig. Stundenlange manuelle Arbeit kann automatisiert werden. Sie ist überall anwendbar. Sie kann überall eingesetzt werden, um Verkehrs- oder Wetterbedingungen vorherzusagen. Der Einsatz von Automatisierung in der KI ist einer der größten Segen unter den anderen.

Vorteile der künstlichen Intelligenz

Pharmaceutical Market of AI at a Glance

  • Reduzierung menschlicher Fehler

Künstliche Intelligenz ist hilfreich bei der Reduzierung des sogenannten „menschlichen Versagens“. Menschen machen zwangsläufig Fehler, aber das ist bei Computersystemen nicht der Fall. Computer machen diese Fehler nicht, wenn sie richtig programmiert sind. KI wird vorteilhaft eingesetzt, indem zuvor gesammelte Informationen mithilfe eines bestimmten Satzes von Algorithmen angewendet werden. Daher werden Fehler in dieser Hinsicht minimiert und die Möglichkeit eines höheren Präzisionsgrades erhöht.

  • Geht Risiken ein, statt Menschen

Mithilfe eines KI-Roboters können viele riskante Einschränkungen des Menschen überwunden werden, da dieser wiederum schwierige Aufgaben für uns übernehmen kann. Dies ist einer der größten Vorteile künstlicher Intelligenz.

Wenn wir uns zum Beispiel an die Explosion im Kernkraftwerk Tschernobyl in der Ukraine erinnern, gab es damals keine KI-gesteuerten Roboter, die uns helfen konnten, die Auswirkungen der Strahlung in dieser Situation zu minimieren. KI-Roboter hätten der riesigen Menschenmenge helfen können, indem sie das Feuer eindämmten. KI-Roboter können in solchen Fällen eingesetzt werden, in denen ein Eingreifen gefährlich sein kann.

  • Volle Verfügbarkeit

Wenn wir die Pausen außer Acht lassen, arbeitet ein durchschnittlicher Mensch täglich etwa 4–6 Stunden. Den ganzen Tag zu arbeiten wird für Menschen schwierig und unmöglich. Die Work-Life-Balance aufrechtzuerhalten, persönliche Verpflichtungen zu bewältigen und dem ermüdenden Arbeitsdruck zu begegnen, ist schwierig. Manchmal ist eine Arbeit unerlässlich und muss in einem bestimmten Zeitrahmen erledigt werden, aber manchmal ist das unmöglich. Mithilfe von KI können wir Maschinen rund um die Uhr ohne Pause arbeiten lassen, und im Gegensatz zu Menschen wird ihnen nicht einmal langweilig.

  • Unterstützt die Forschung

KI ermöglicht es Forschern, die großen Datenmengen aus verschiedenen Quellen zu bewältigen. Mit Echtzeitdaten kann die Forschung von der großen Menge an verfügbaren Informationen profitieren, solange diese leicht zu übersetzen sind. Medizinische Forschungsinstitute wie das Childhood Cancer Data Lab entwickeln nützliche Software für medizinisches Fachpersonal, um umfangreiche Datensammlungen besser steuern zu können. KI wird auch häufig eingesetzt, um Symptome zu beurteilen und zu erkennen, um das Fortschreiten der Krankheit zu verhindern. Telemedizinische Lösungen werden eingesetzt, um den Fortschritt der Patienten zu verfolgen, wichtige Diagnosedaten wiederherzustellen und Bevölkerungsinformationen in gemeinsam genutzte Netzwerke zu bringen.

  • Reduzieren Sie den Stress für Ärzte

Laut einigen aktuellen Forschungsberichten fühlen sich mehr als die Hälfte der Allgemeinärzte durch Termindruck und andere Faktoren am Arbeitsplatz gestresst. KI hilft dabei, Verfahren zu rationalisieren, Funktionen zu automatisieren, Daten sofort auszutauschen und Abläufe zu organisieren, was Ärzten im Allgemeinen hilft, Jonglieren mit Dingen zu vermeiden. KI kann jedoch bei zeitintensiveren Abläufen helfen, beispielsweise bei der Erklärung von Diagnosen, wodurch medizinisches Fachpersonal eine gewisse Stresslinderung erfahren kann.“

  • Sicherere Operationen

Chirurgen erhalten ein höheres Maß an Geschick, um in kleinen Räumen zu operieren, die sonst offene Operationen erfordern würden. KI hilft in dieser Hinsicht und findet ihren geeigneten Platz in der Gesundheitsrobotik, indem sie ihren entsprechenden Bedarf in der Chirurgie deckt. Roboter können bei empfindlichen Organen und Geweben präziser vorgehen, das Infektionsrisiko und die Schmerzen nach Operationen verringern und den Blutverlust reduzieren. Roboterchirurgie bietet weitere Vorteile, wie weniger Narbenbildung und kürzere Genesungszeiten aufgrund kleinerer erforderlicher Einschnitte. So setzte das Universitätsklinikum Maastricht in den Niederlanden 2017 einen KI-gestützten Roboter ein, um kleine Blutgefäße zu nähen, von denen einige größer als 0,03 Millimeter sind. Der Roboter wird von einem Chirurgen bedient und gesteuert, dessen Handbewegungen in präzise Aktionen umgesetzt werden, die von Roboterhänden ausgeführt werden.

Unser DBMT-Team hat den Markt für gynäkologische Roboterchirurgie untersucht und festgestellt, dass Nordamerika den Markt für gynäkologische Roboterchirurgie aufgrund der steigenden Nachfrage nach minimalinvasiver Chirurgie in der Bevölkerung der Region dominiert. Der asiatisch-pazifische Raum wird im Prognosezeitraum aufgrund des wachsenden Bewusstseins für Frauengesundheit und der Gesundheitsausgaben in der Region voraussichtlich ein erhebliches Wachstum verzeichnen. Einige der wichtigsten Akteure auf dem Markt für gynäkologische Roboterchirurgie sind BOWA-electronic GmbH & Co. KG, Prima Medical, XCELLANCE Medical Technologies, ATMOS MedizinTechnik GmbH & Co. KG, Ethicon US, LLC., Johnson & Johnson Services, Inc. und Parkell, Inc.

Um mehr über die Studie zu erfahren, besuchen Sie bitte: https://www.databridgemarketresearch.com/de/reports/global-gynecology-robotic-surgery-market

  • Verstärkte Präventionsmaßnahmen

KI und maschinelles Lernen unterstützen die Prävention und Bekämpfung von Infektionskrankheiten. Die Ausbruchsinformationsplattform Blue Dot hilft bei der Analyse von Flugtickets und Flugrouten, um den Verlauf von COVID-19 von Wuhan nach Bangkok, Seoul und Taipeh genau vorherzusagen. Ebenso können KI-gestützte Systeme Ärzten helfen, die Ausbreitung von Krankheiten zu erkennen, wenn Patienten eine Notaufnahme betreten, und bieten eine schnelle Diagnose, um wirksame Isolierungs- und Quarantäneverfahren zu ermöglichen.

  • Reduzieren Sie die Gesamtkosten

KI trägt dazu bei, den Zeitaufwand für die Durchführung bestimmter Prozesse und die Kosten dieser Prozesse erheblich zu reduzieren. Beispielsweise kann KI Millionen von Bildern analysieren, um Anzeichen einer Krankheit zu erkennen. Die damit verbundene kostspielige manuelle Arbeit entfällt. Patienten werden schneller und effektiver behandelt, was mehrere Vorteile mit sich bringt, wie etwa eine Verringerung der Aufnahmezahlen, Wartezeiten und des Bettenbedarfs.

Eine aktuelle Studie prognostizierte erhebliche Kosteneinsparungen durch die KI-Automatisierung in mehreren Bereichen:

  • Reduzierung von Dosierungsfehlern – 16 Milliarden US-Dollar
  • Robotergestützte Chirurgie – 40 Milliarden Dollar
  • Administrative Arbeitsablaufunterstützung – 18 Milliarden US-Dollar
  • Virtuelle Pflegeassistenten – 20 Milliarden US-Dollar
  • Betrugserkennung – 17 Milliarden US-Dollar

Unser DBMR-Team hat den Markt für minimalinvasive medizinische Robotik, Bildgebungs- und Visualisierungssysteme sowie chirurgische Instrumente untersucht und festgestellt, dass der Markt bis 2028 ein Volumen von 91,22 Milliarden USD erreichen und im oben genannten Prognosezeitraum mit einer durchschnittlichen jährlichen Wachstumsrate von 8,6 % wachsen wird. Nordamerika ist aufgrund der hohen Unfallverletzungsrate und der großen geriatrischen Bevölkerung in der Region führend auf dem Markt für minimalinvasive medizinische Robotik, Bildgebungs- und Visualisierungssysteme sowie chirurgische Instrumente. Der asiatisch-pazifische Raum wird im Prognosezeitraum 2021 bis 2028 aufgrund der Verkehrsunfälle, der zunehmenden geriatrischen Bevölkerung in Japan und China und der Schwellenländerwirtschaft, die die Einführung von MIS-Verfahren in dieser Region fördern dürfte, voraussichtlich ein deutliches Wachstum aufweisen.

Um mehr über die Studie zu erfahren, besuchen Sie bitte:https://www.databridgemarketresearch.com/de/reports/global-minimally-invasive-medical-robotics-imaging-visualization-systems-surgical-instruments-market

KI im Gesundheitswesen

Der große Einfluss von KI bei der Entwicklung pharmazeutischer Produkte ermöglicht ein rationales Medikamentendesign, hilft bei der Entscheidungsfindung, erkennt die richtige Therapie für einen Patienten, einschließlich personalisierter Medikamente, und verwaltet die generierten und für die zukünftige Medikamentenentwicklung verwendeten klinischen Daten. E-VAI beispielsweise ist eine von Eularis entwickelte KI-Plattform für Analyse und Entscheidungsfindung, die maschinelle Lernalgorithmen verwendet, um analytische Roadmaps auf der Grundlage von Wettbewerbern, wichtigen Interessengruppen und dem aktuellen Marktanteil zu erstellen und so die wichtigsten Treiber des Arzneimittelverkaufs vorherzusagen. Dies hilft Marketingmanagern, Ressourcen für die größtmögliche Ausweitung des Marktanteils zuzuweisen, und ermöglicht ihnen auch, vorherzusagen, wo Investitionen getätigt werden sollten.

KI spielt bei der Arzneimittelentdeckung eine entscheidende Rolle. KI kann Hit- und Lead-Verbindungen erkennen, innerhalb kurzer Zeit eine schnellere Validierung des Arzneimittelziels ermöglichen und das Design der Arzneimittelstruktur optimieren. Sie findet breite Anwendung in verschiedenen Aspekten der Arzneimittelentdeckung. Im Folgenden wird dies erklärt:

Pharmaceutical Market of AI at a Glance

Trotz der Vorteile der KI gibt es auch erhebliche Herausforderungen im Umgang mit Daten, wie beispielsweise Umfang, Wachstum, Vielfalt und Unsicherheit der Daten. Die Datensätze, die für die Arzneimittelentwicklung in verschiedenen Pharmaunternehmen zur Verfügung stehen, können Millionen von Verbindungen umfassen, und herkömmliche ML-Tools können mit solchen Problemen nicht umgehen.

Beispielsweise kann ein auf quantitativen Struktur-Wirkungs-Beziehungen (QSAR) basierendes Computermodell eine große Anzahl von Verbindungen oder einfache physikochemischen Parameter wie log P oder log D in kurzer Zeit vorhersagen. Darüber hinaus sind QSAR-basierte Modelle auch mit ernsthaften Problemen konfrontiert, wie etwa experimentellen Datenfehlern in Trainingssätzen, kleinen Trainingssätzen und fehlenden experimentellen Validierungen.

Es wurden zahlreiche In-silico-Methoden und virtuelle Screening-Verbindungen aus virtuellen chemischen Räumen eingeführt, die in Kombination mit den struktur- und ligandenbasierten Ansätzen eine bessere Profilanalyse, eine schnellere Eliminierung von Nicht-Leitverbindungen und eine Auswahl von Arzneimittelmolekülen mit geringerem Aufwand ermöglichen. Arzneimitteldesign-Algorithmen wie Coulomb-Matrizen und molekulare Fingerabdruckerkennung berücksichtigen die physikalischen, chemischen und toxikologischen Profile, um bei der Auswahl einer Leitverbindung zu helfen.

Unser DBMR-Team hat den Markt für In-silico-Arzneimittelentdeckung untersucht und festgestellt, dass die Region Nordamerika aufgrund der schnellen technologischen Fortschritte, der starken Präsenz starker Anbieter und der großen Zahl an Patienten, die an verschiedenen chronischen und ansteckenden Krankheiten leiden, führend auf dem Markt für In-silico-Arzneimittelentdeckung ist. Der asiatisch-pazifische Raum dürfte aufgrund der steigenden Zahl an Akademikern und der umfangreichen Forschung zu Krebs und Diabetes ein deutliches Wachstum aufweisen. Auch das starke Wachstum im Bereich der Biomarkeridentifizierung und der Fokus auf die Reduzierung der Wiedereinweisungsraten und der medizinischen Fehler dürften zum Wachstum auf dem Weltmarkt beitragen.

Um mehr über die Studie zu erfahren, besuchen Sie bitte:https://www.databridgemarketresearch.com/de/reports/global-in-silico-drug-discovery-market

Liste der bei der Arzneimittelforschung verwendeten KI-Tools

Bei der Arzneimittelforschung werden häufig verschiedene KI-Tools eingesetzt. Mehrere webbasierte Tools wie LimTox, admetSAR, Toxtree und pkCSM sind verfügbar, um die Kosten vieler verschiedener Tests zu senken. Fortgeschrittene KI-basierte Ansätze suchen meist nach Ähnlichkeiten zwischen Verbindungen oder sagen die Toxizität der Verbindung anhand von Eingabemerkmalen voraus. Ein weiteres Beispiel für ein solches Tool ist eToxPred, das hilft, die Toxizität der Verbindungen und die Synthesemöglichkeit vieler kleiner organischer Moleküle mit einer Genauigkeit von bis zu 72 % abzuschätzen. Es gibt auch viele andere Tools, die bei der Vorhersage der Toxizität der Verbindung helfen. Oftmals haben einige der von der FDA zugelassenen Medikamente schwerwiegende Nebenwirkungen, die so früh wie möglich vorhergesagt werden müssen; diese KI-Tools werden in dieser Hinsicht verwendet. Es gibt eine große Bandbreite an KI-Tools, aber hier sind einige der Tools aufgeführt:

Pharmaceutical Market of AI at a Glance

Pharmazeutischer Markt der KI auf einen Blick

Viele Pharmaunternehmen setzen zunehmend auf KI, um die mit den Experimenten verbundenen finanziellen Kosten und Fehlerwahrscheinlichkeiten zu senken. Der KI-Markt ist von 200 Millionen USD im Jahr 2015 auf 700 Millionen USD im Jahr 2018 gewachsen und soll bis 2024 auf 5 Milliarden USD anwachsen. KI wird den Pharma- und Medizinsektor voraussichtlich revolutionieren und zwischen 2017 und 2024 um 40 % wachsen. Viele Pharmaunternehmen haben große Investitionen in künstliche Intelligenz getätigt und tun dies auch weiterhin. Sie haben sich mit mehreren KI-Unternehmen zusammengeschlossen, um wichtige Tools für das Gesundheitswesen zu entwickeln. So gab es beispielsweise eine Zusammenarbeit zwischen DeepMind Technologies, einer Tochtergesellschaft von Google, und dem Royal Free London NHS Foundation Trust, die zur Behandlung von akutem Nierenversagen eingesetzt wurde. Ein weiteres Beispiel sind Boehringer Ingelheim und HealX, die bei der Suche nach Therapien für seltene neurologische Erkrankungen zusammengearbeitet haben. Eli Lilly and Company und Atomwise haben zusammengearbeitet, um Medikamente für neuartige Proteintargets zu entwickeln. Ein weiteres Beispiel auf der Liste ist die Zusammenarbeit von Mateon Therapeutics und PointR Data, die bei der Behandlung von Melanomen im Spätstadium, Bauchspeicheldrüsenkrebs und Gliomen half. F. Hoffmann-La Roche und Owkin haben zahlreiche klinische Studien auf der Grundlage von Algorithmen des maschinellen Lernens durchgeführt.

KI-basierte fortgeschrittene Anwendungen

  • KI-basierte Nanoroboter zur Arzneimittelverabreichung

Nanoroboter bestehen hauptsächlich aus integrierten Schaltkreisen, Sensoren, Stromversorgung und sicherer Datensicherung, die über Computertechnologien wie KI verwaltet werden. Sie sind so programmiert, dass sie Kollisionen vermeiden, Ziele identifizieren, erkennen und anhaften und schließlich aus dem Körper ausscheiden. Die neuesten Fortschritte bei Nano-/Mikrorobotern ermöglichen es ihnen, auf der Grundlage physiologischer Bedingungen wie dem pH-Wert zum Zielort zu navigieren, wodurch die Wirksamkeit verbessert und systemische Nebenwirkungen verringert werden.

Viele Parameter müssen berücksichtigt werden, wie Dosisanpassung, verzögerte Freisetzung, kontrollierte Freisetzung und die Freisetzung der Medikamente, die für eine angemessene Verabreichung der Medikamente kontrolliert werden müssen. Mikrochip-Implantate werden für die programmierte Freisetzung des Implantats sowie zur Erkennung der geeigneten Position des Implantats im Körper verwendet.

Unser DBMR-Team hat den Markt für Nanoroboter untersucht und festgestellt, dass Nordamerika den Markt für Nanoroboter aufgrund der zunehmenden Verbreitung der Nanoroboter-Technologie dominiert. Darüber hinaus wird das Vorhandensein einer hochentwickelten Gesundheitsinfrastruktur das Wachstum des Marktes für Nanoroboter in der Region im Prognosezeitraum weiter ankurbeln. Die wachsenden Anwendungsbereiche von Mikroskopen und die Einbeziehung von Mikroskopie und Spektroskopie werden voraussichtlich in den kommenden Jahren potenzielle Wachstumschancen für den Markt für Nanoroboter bieten.

Um mehr über die Studie zu erfahren, besuchen Sie bitte:https://www.databridgemarketresearch.com/de/reports/global-nanorobots-market

  • Entstehung von KI in der Nanomedizin

Der Einsatz von Nanotechnologie nimmt definitiv zu. Wissenschaftler verlassen sich auf diese Methodik und setzen sie im medizinischen Bereich immer häufiger ein. Nanomedizin wird zur Diagnose und Behandlung vieler komplexer Krankheiten eingesetzt, nämlich HIV, Krebs, Malaria, Asthma und verschiedener entzündlicher Erkrankungen. In den letzten Jahren ist die Verabreichung von Medikamenten mit Nanopartikeln aufgrund ihrer verbesserten Wirksamkeit und Behandlungsmöglichkeit im Bereich der Therapie und Diagnostik notwendig geworden. Wenn Nanotechnologie mit KI kombiniert wird, können viele Probleme bei der Formulierungsentwicklung gelöst werden. Beispielsweise unterstützte KI die Herstellung von Silicasomen. Silicasome sind eine Kombination aus iRGD, einem tumorpenetrierenden Peptid, und mit Irinotecan beladenen multifunktionalen mesoporösen Silica-Nanopartikeln. Nanomedizin hat die Aufnahme von Silicasomen um das Drei- bis Vierfache erhöht, da iRGD zur Verbesserung der Transzytose von Silicasomen beiträgt.

  • KI bei der Verabreichung kombinierter Arzneimittel und der Vorhersage von Synergismus/Antagonismus

Mehrere neue Medikamentenkombinationen wurden zur Behandlung komplexer Krankheiten wie Tuberkulose und Krebs zugelassen und vermarktet, da sie einen synergistischen Effekt für eine schnelle Genesung der Patienten bieten können.. Die für diese Kombination ausgewählten potenziellen Medikamente erfordern ein Hochdurchsatz-Screening einer beträchtlichen Anzahl von Medikamenten, was den Prozess langwierig macht. Beispielsweise erfordert die Krebstherapie eine Kombination aus sechs oder sieben Medikamenten. Rashid et al. entwickelten ein Modell einer quadratischen Phänotyp-Optimierungsplattform, mit der anhand einer Sammlung von 114 von der FDA zugelassenen Medikamenten die optimale Kombinationstherapie zur Behandlung von Bortezomib-resistentem multiplem Myelom ermittelt werden kann. Die beiden besten Medikamente in diesem Modell sind Decitabin (Dec) und Mitomycin C (MitoC).

Neben den fortschrittlichen Anwendungen der KI ist sie auch für die Marktpositionierung von Bedeutung. Dank der einfachen Technologie und des E-Commerce ist es für alle Unternehmen einfacher geworden, ihre Marke auf der öffentlichen Plattform bekannt zu machen. Eines der am häufigsten verwendeten Tools ist SEO, das die meisten Unternehmen verwenden, um eine feste Position im Online-Marketing einzunehmen und das Produkt auf dem Markt zu positionieren. Unternehmen versuchen ständig, ihre Position auf einer höheren Position im Spiel zu halten und ihrer Marke in kurzer Zeit Bekanntheit zu verschaffen.

Unser DBMR-Team hat den E-Commerce-Verpackungsmarkt untersucht und festgestellt, dass der asiatisch-pazifische Raum den E-Commerce-Verpackungsmarkt in Bezug auf Marktanteil und Umsatz dominiert und seine Dominanz im Prognosezeitraum weiter ausbauen wird. Dies ist auf die steigende Verbraucherpräferenz für Wellpappkartons in Wachstumsländern wie Indien, China und Japan zurückzuführen. China ist führend auf dem asiatisch-pazifischen Markt. Covid-19 hat das Marktwachstum angekurbelt. Covid-19 schränkte die Bewegung von Menschen und Materialien ein. Der E-Commerce spielte während der Pandemie eine wichtige Rolle, da die Nachfrage nach lebenswichtigen Gütern wie Lebensmitteln, Medikamenten, Gemüse und anderen Produkten stieg.

Um mehr über die Studie zu erfahren, besuchen Sie bitte:https://www.databridgemarketresearch.com/de/reports/global-e-commerce-packaging-market

Abschluss:

Mit der Weiterentwicklung der künstlichen Intelligenz und ihrer bemerkenswerten Tools gewinnen Pharmaunternehmen in vielerlei Hinsicht Vorteile. Sie wirkt sich auf den Arzneimittelentwicklungsprozess sowie den gesamten Lebenszyklus des Produkts aus, was wiederum den Anstieg der Zahl der Start-ups leicht erklärt. Der Gesundheitssektor steht vor vielen Herausforderungen, wie beispielsweise den steigenden Kosten für Medikamente und Therapien. Die Gesellschaft braucht in diesem Bereich erhebliche Veränderungen, denen Bedeutung beigemessen werden muss. Mit dem Voranschreiten des Zeitalters der digitalen Gesundheit und der zunehmenden Verbreitung von KI kommen auch personalisierte Medikamente mit der gewünschten Dosis, den Freisetzungsparametern und anderen erforderlichen Aspekten auf den Markt, die entsprechend den individuellen Bedürfnissen der Patienten hergestellt werden können. KI-basierte Technologien werden nicht nur dazu beitragen, die Zeit zu verkürzen, die die Produkte benötigen, um auf den Markt zu kommen, sondern darüber hinaus werden sie auch zur Verbesserung der Produkte und der allgemeinen Sicherheit des Produktionsprozesses beitragen.

Darüber hinaus wird es auch eine bessere Nutzung kostengünstiger und verfügbarer Ressourcen ermöglichen, wodurch die Bedeutung der Automatisierung zunimmt. Abgesehen von diesem Aspekt sind die größten Sorgen im Zusammenhang mit der Implementierung dieser Technologien die damit verbundenen Arbeitsplatzverluste und die strengen Vorschriften, die für den Einsatz von KI erforderlich sind. Diese Systeme tragen jedoch dazu bei, die Einfachheit des Menschen zu fördern, ersetzen ihn jedoch nicht vollständig. Viele Händler nehmen KI-Komponenten in ihr Standardangebot auf oder bieten Zugang zu AI-as-a-Service-Plattformen (AIaaS). Ihre Hardware-, Software- und Personalkosten für KI können teuer werden. Die Bedeutung von AIaaS besteht darin, dass es Einzelpersonen und Unternehmen ermöglicht, für verschiedene Geschäftszwecke mit KI zu experimentieren. Die verschiedenen Teilbereiche der KI, nämlich maschinelles Lernen, neuronale Netzwerke und Deep Learning, sind auch bei der Arzneimittelforschung gleichermaßen hilfreich. Darüber hinaus unterstützen und ermöglichen mehrere andere Technologien KI, nämlich Computer Vision, das Internet der Dinge, fortschrittliche Algorithmen und grafische Verarbeitungseinheiten.


Kundenbewertungen