Algorithmen oder Computerprogramme, die Daten verwenden, um Maßnahmen zu bestimmen oder Vorhersagen zu treffen, werden als künstliche Intelligenz bezeichnet. Damit der Computer Daten untersuchen und zu einem Urteil gelangen kann, können Wissenschaftler einen Satz Regeln oder Anweisungen entwickeln, denen der Computer folgen muss. Maschinelles Lernen ist eine weitere Technik der künstlichen Intelligenz, bei der das System sich selbst darin trainiert, Daten auszuwerten und zu verstehen. Infolgedessen können Algorithmen des maschinellen Lernens Muster erkennen, die für das menschliche Auge oder Gehirn schwer zu erkennen sind. Darüber hinaus werden diese Algorithmen besser darin, die Daten zu lernen und zu interpretieren, wenn sie mit mehr neuen Informationen konfrontiert werden.
Data Bridge Market Research analysiert, dass der Markt für künstliche Intelligenz im Gesundheitswesen im Prognosezeitraum 2022–2029 voraussichtlich eine durchschnittliche jährliche Wachstumsrate von 51,37 % aufweisen wird. Dies deutet darauf hin, dass der Marktwert, der 2021 6,35 Milliarden USD betrug, bis 2029 auf 175,22 Milliarden USD ansteigen wird. Im Januar 2019 entwickelte der Dartford and Gravesham NHS Trust im Vereinigten Königreich eine KI-gestützte tragbare Technologie zur Überwachung von Patienten bei der Entlassung aus dem Krankenhaus. Im Oktober 2019 kündigten care.ai und NVIDIA eine Zusammenarbeit an, um eine künstliche Intelligenz-gestützte autonome Patientenüberwachung im Gesundheitswesen unter Nutzung der NVIDIA-Plattform bereitzustellen.
Weitere Informationen zur Studie finden Sie unter:https://www.databridgemarketresearch.com/de/reports/global-artificial-intelligence-in-healthcare-market
Deep Learning, ein Teilbereich des maschinellen Lernens, wurde von Forschern auch in der Krebsbildgebung eingesetzt. Deep Learning bezieht sich auf Algorithmen, die Daten mit Methoden kategorisieren, die dem menschlichen Gehirn ähneln. Künstliche neuronale Netzwerke werden von Deep-Learning-Technologien verwendet, um zu simulieren, wie unsere Gehirnzellen Nachrichten aus dem Rest unseres Körpers empfangen, interpretieren und darauf reagieren. Um festzustellen, ob eine Masse krebsartig ist oder nicht, führen Ärzte Krebsbildgebungstests durch. Wie schnell entwickelt es sich, wenn es Krebs ist? Wie stark hat es sich ausgebreitet? Hat es sich seit der Behandlung erholt? Studien zufolge kann KI die Schnelligkeit, Präzision und Zuverlässigkeit der Antworten von medizinischem Fachpersonal verbessern. Die Anwendung von KI in der Onkologie kann in verschiedenen Stadien verstanden werden:
Abb. 1: Die Rolle der KI in der Onkologie
- Krebs im Frühstadium erkennen- Menschen werden routinemäßig mit Verfahren wie Mammographie und Pap-Tests auf Anzeichen von Krebs oder Zellen untersucht, die sich zu Krebs entwickeln könnten. Ziel ist es, Krebs frühzeitig zu erkennen und zu behandeln, bevor er sich ausbreitet oder gar wächst. Zur Unterstützung von Brustkrebs-Screening-Tests und anderen Arten von Krebs-Screening-Tests haben Wissenschaftler KI-Technologien entwickelt. In den letzten 20 Jahren haben KI-basierte Computeralgorithmen Ärzten dabei geholfen, Mammogramme zu entziffern, aber das Forschungsgebiet entwickelt sich rasant. Ein Team hat ein KI-System entwickelt, um bei der Entscheidung zu helfen, wie häufig Frauen auf Brustkrebs untersucht werden sollten. Der Algorithmus sagt anhand der Ergebnisse einer Mammographie die Wahrscheinlichkeit voraus, mit der eine Person innerhalb der nächsten fünf Jahre an Brustkrebs erkrankt. Das Modell schnitt in Tests besser ab als die aktuellen Methoden zur Vorhersage des Brustkrebsrisikos. Ein Deep-Learning-Algorithmus, der Gebärmutterhalskrebsvorstufen erkennen kann, die entfernt oder behandelt werden müssen, wurde von NCI-Forschern entwickelt und getestet. In einigen Situationen mit geringen Ressourcen untersuchen medizinische Fachkräfte den Gebärmutterhals mit einer winzigen Kamera, um nach Gebärmutterhalskrebsvorstufen zu suchen. Dieser Ansatz ist unkompliziert und nachhaltig; Allerdings ist sie weder sehr präzise noch zuverlässig. Mehrere KI-Technologien haben in klinischen Studien gezeigt, dass sie die Diagnose von Adenomen verbessern, also präkanzerösen Wucherungen, die zu Dickdarmkrebs führen können. Einige Spezialisten befürchten, dass diese KI-Technologien viele Menschen zu unnötigen Behandlungen und zusätzlichen Tests zwingen könnten, da sich nur ein kleiner Teil der Adenome zu Krebs entwickelt.
- Krebserkennung und -diagnose- KI kann dabei helfen, Krebs bei Menschen, die bereits Anzeichen aufweisen, früher zu diagnostizieren. Beispielsweise könnte das von Dr. Turkbey und seinen Kollegen am Center for Cancer Research des NCI entwickelte KI-Modell es Radiologen einfacher machen, Prostatakrebs zu identifizieren, der bei einer relativ neuen Art von Prostata-MRT-Scan, der als multiparametrische MRT bekannt ist, aggressiv sein könnte. Das vom NCI-Team entwickelte KI-Modell „könnte die Fehlerrate minimieren und die Lernkurve für praktizierende Radiologen erleichtern“, so Dr. Turkbey. Er sagte, dass das KI-Modell als „virtueller Experte“ für weniger erfahrene Radiologen fungieren könnte, die den Umgang mit multiparametrischer MRT erlernen. Viele Deep-Learning-KI-Modelle wurden entwickelt, um Kliniker bei der Erkennung von Lungenkrebs auf CT-Scans zu unterstützen. Es gibt einen erheblichen Anteil falsch-positiver Testergebnisse, die darauf hinweisen, dass eine Person Lungenkrebs hat, obwohl dies tatsächlich nicht der Fall ist, da einige nicht krebsartige Anomalien in der Lunge auf CT-Scans sehr ähnlich wie Krebs erscheinen können. Theoretisch könnte KI die Anzahl falscher Positivbefunde verringern und einigen Patienten unnötigen Stress, Folgeuntersuchungen und Operationen ersparen, indem sie Lungenkrebs auf CT-Bildern besser von nicht krebsartigen Veränderungen unterscheiden kann. Ein Forscherteam hat einen Deep-Learning-Algorithmus entwickelt, um Lungenkrebs zu erkennen und andere Veränderungen zu vermeiden, die Krebs ähneln.
- Wahl der Krebsbehandlung- Ärzte nutzen bildgebende Verfahren auch, um wichtige Daten über Krebs zu sammeln, etwa wie schnell er sich entwickelt, ob er sich ausgebreitet hat und ob er nach der Therapie wahrscheinlich wiederkehrt. Ärzte können diese Informationen nutzen, um die beste Vorgehensweise für ihre Patienten zu bestimmen. Zahlreiche Forschungsergebnisse deuten darauf hin, dass KI in der Lage sein könnte, Prognosedaten aus bildgebenden Scans genauer und umfassender zu extrahieren als Menschen es derzeit können. Beispielsweise kann ein von Dr. Harmon und ihren Kollegen entwickeltes Deep-Learning-Modell das Risiko vorhersagen, dass ein Patient mit Blasenkrebs neben der Operation weitere Therapien benötigt. Laut Medizinern sind bei etwa 50 % der Personen mit Tumoren im Blasenmuskel (muskelinvasiver Blasenkrebs) Krebszellhaufen, die sich außerhalb der Blase ausgebreitet haben, zu klein, um mit herkömmlichen Methoden erkannt zu werden. Diese unentdeckten Zellen können sich nach der Operation weiter vermehren, wenn sie nicht eliminiert werden, was zu einem Rückfall führt. Diese kleinen Cluster können durch Chemotherapie eliminiert werden, wodurch verhindert wird, dass der Krebs nach der Operation wiederkehrt. Wie klinische Studien jedoch gezeigt haben, könnte es laut Dr. Harmon schwierig sein, festzustellen, ob Patienten auch eine Chemotherapie benötigen. Das Modell analysiert digitale Bilder des ursprünglichen Tumorgewebes, um festzustellen, ob sich in den umliegenden Lymphknoten mikroskopisch kleine Krebsansammlungen befinden. In einer 2020 veröffentlichten Studie übertraf das Deep-Learning-Modell die herkömmliche Methode zur Vorhersage, ob sich Blasenkrebs ausgebreitet hat, und zwar auf Grundlage mehrerer Variablen, darunter das Alter des Patienten und spezifische Tumoreigenschaften. Die genetische Zusammensetzung des Krebses des Patienten wird zunehmend untersucht, um die beste Vorgehensweise zu bestimmen. Chinesische Forscher entwickelten einen Deep-Learning-Algorithmus, um das Vorhandensein wichtiger Genmutationen in Leberkrebsgewebe anhand von Fotos des Gewebes vorherzusagen, was Pathologen allein durch Betrachten der Bilder nicht möglich ist. Die Wissenschaftler, die den Algorithmus erstellt haben, wissen nicht, wie dieser feststellt, welche Genveränderungen im Tumor vorhanden sind, was ihr Tool zu einem Beispiel für KI macht, die auf überraschende Weise funktioniert.
- KI in der medizinischen Bildgebung- Die Vorhersage von Krebs kann von KI und maschinellem Lernen profitieren. Künstliche Intelligenz ist in der Lage, bereits gestreute bösartige Tumore und Menschen mit einem hohen Risiko zu erkennen, bevor es dazu kommt. Dadurch können medizinische Fachkräfte diese Patienten genau überwachen und bei Bedarf schnell handeln. Eine Informatikerin am MIT namens Regina Barzilay war daran interessiert, künstliche Intelligenz (KI) zur Krebsvorhersage zu testen. Das MIT-Team untersuchte das Potenzial dieser Technologie, Frauen mit Brustkrebsrisiko zu identifizieren, bevor irgendwelche offensichtlichen Symptome auftreten. Um herauszufinden, welche Patientinnen Krebs hatten, sammelte sie über einen Zeitraum von vier Jahren über 40.000 Mammogramme von Frauen, insgesamt etwa 89.000, und verglich die Scans mit dem nationalen Tumorregister. Regina verwendete dann eine Auswahl dieser Fotos, um einen Algorithmus für maschinelles Lernen (ML), eine Art KI, zu trainieren, und verwendete diesen Algorithmus dann, um Vorhersagen zu erstellen. Der Algorithmus identifizierte 30 % der zukünftigen Brustkrebspatientinnen korrekt als zur Hochrisikogruppe gehörend. KI hat im Bereich der medizinischen Bildgebung verschiedene Verwendungsmöglichkeiten. Die Identifizierung und Kategorisierung bösartiger Tumore ist eine der offensichtlichsten. Die FDA hat im September 2021 Paige Prostate zugelassen, ein KI-gestütztes Pathologie-Tool für Krebs. Zusammen mit dem digitalen Pathologie-Viewer FullFocus hilft dieses KI-Tool bei der Erkennung von Prostatakrebs. Als Voraussetzung für diese Zulassung überprüfte die FDA Daten einer klinischen Untersuchung, bei der 16 Pathologen 527 Prostatabiopsiefotos auf der Suche nach Krebsindikatoren untersuchten.
- KI bei Blutuntersuchungen- Bluttests mit KI-Erweiterungen können Ärzten dabei helfen, Krebs genauer zu erkennen. Laut einer Studie in Cancer Cell International ist die Blutprofilierung, bei der Plasma-ctDNA- und miRNA-Profile mithilfe von KI-Algorithmen analysiert werden, eine effektivere Methode zur Erkennung und Überwachung von Krebs als herkömmliche CT-Scans. Forscher des Johns Hopkins Kimmel Cancer Center haben eine hochmoderne KI-basierte Technik entwickelt, um Lungenkrebs mithilfe von Bluttests zu erkennen. Blutproben von 796 Teilnehmern aus den USA, Dänemark und den Niederlanden wurden verwendet, um diese Methode zu testen. Diesen Bluttest kombinierten die Forscher mit Protein-Biomarkern, klinischen Risikofaktoren und CT-Scans der Patienten. So konnten sie Krebs bei 91 % der Menschen in frühen Krankheitsstadien und bei 96 % der Patienten in fortgeschrittenen Krebsstadien richtig erkennen.
- KI in der Immuntherapie- Die Hauptfunktion der KI in der Immuntherapie besteht darin, die Ergebnisse verschiedener Therapien zu beurteilen und Ärzte bei der Anpassung ihrer Verschreibungen zu unterstützen. Ein Forschungsteam des MD Anderson Cancer Center und des UT Southwestern Medical Center hat eine KI-gestützte Methode entwickelt, um festzustellen, ob Neoantigene – Peptide, die entstehen, wenn das Genom von Krebszellen mutiert – vom Immunsystem eines Patienten erkannt werden. Solche KI-Algorithmen würden es ermöglichen, vorherzusagen, wie Krebszellen auf Immuntherapien reagieren. Die T-Zellen unseres Immunsystems halten immer nach Anzeichen von Krebs und anderen invasiven Organismen Ausschau. Diese Zellen binden sich aneinander, wenn sie Neoantigene erkennen. Einige Neoantigene werden jedoch nicht erkannt, was die Ausbreitung von Krebs fördert. Diese Informationen würden es ermöglichen, die Reaktion von Patienten auf Immuntherapien vorherzusagen und individualisierte T-Zell-basierte Therapeutika und Krebsimpfstoffe zu entwickeln.
Der Markt für Immunonkologie (IO) wird im Prognosezeitraum von 2022 bis 2029 voraussichtlich ein Marktwachstum von 8,90 % verzeichnen. Der Markt für Immunonkologie (IO) ist nach Typ, Ziel, Indikation, Endnutzern und Vertriebskanal segmentiert. Im asiatisch-pazifischen Raum wird ein deutliches Wachstum der zunehmenden positiven Wachstumsrate bei der Einführung von Krebsimmuntherapien erwartet. Darüber hinaus wird erwartet, dass der Anstieg der Krankheitsinzidenz und die damit verbundene steigende Sterblichkeitsrate das Wachstum des Marktes für Immunonkologie (IO) in der Region in den kommenden Jahren weiter vorantreiben werden.
Weitere Informationen zur Studie finden Sie unter:https://www.databridgemarketresearch.com/de/reports/global-immuno-oncology-market
- Medikamentenentwicklung- Das gleiche Medikament kann bei verschiedenen Krebsarten unterschiedlich reagieren. KI kann vorhersagen, wie sich verschiedene Medikamente auf bösartige Zellen auswirken. Diese Informationen helfen bei der Entwicklung neuer Krebsmedikamente und der Wahl des richtigen Einsatzzeitpunkts. Ein Forschungsteam hat beispielsweise einen Random-Forest-Algorithmus entwickelt, der die Wirkung von Krebsmedikamenten je nach Mutationszustand der Krebszelle vorhersagen kann.
Vorteile der KI in der Onkologie
KI bietet im medizinischen Bereich generell viele Vorteile. Hier sind die drei wichtigsten Vorteile des Einsatzes künstlicher Intelligenz bei der Krebserkennung und -behandlung:
Abb. 2: Vorteile der KI in der Onkologie
- Personalisierte Medizin und Therapien - Big Data und KI ermöglichen es Medizinern, eine Vielzahl von Daten über den Patienten und die Krebszellen zu untersuchen, um individuelle Behandlungen zu entwickeln. Die Nebenwirkungen dieser Art von Therapie werden weniger schwerwiegend sein. Gesunde Zellen werden weniger geschädigt, aber die Wirkung auf Krebszellen ist größer. KI hilft Radiologen dabei, festzustellen, welche Tumore und Anomalien krebsartig sind und einen echten medizinischen Eingriff erfordern. Laut einer Studie im Journal of the National Cancer Institute können KI-Algorithmen präkanzeröse Läsionen in Gebärmutterhalsbildern identifizieren und sie von anderen Anomalien unterscheiden, um Patienten unnötige Behandlungen für kleine Probleme zu ersparen.
- Vermeidung invasiver Eingriffe- Manchmal wird die Gutartigkeit des Tumors erst nach der Entfernungsoperation entdeckt, wodurch der Eingriff vollständig hätte vermieden werden können. Solche Vorkommnisse können durch die Unterstützung von KI bei der Krebserkennung stark reduziert werden. Eine Studie ergab beispielsweise, dass KI brusterhaltende Eingriffe um 30,6 % reduzieren kann. Bildgesteuerte Nadelbiopsien können verwendet werden, um maschinelle Lernalgorithmen zu trainieren, um bösartige Tumore zu erkennen. Ein Random-Forest-ML-System wurde verwendet, um 335 potenzielle Krebspatienten zu untersuchen, und die Forscher fanden heraus, dass es ein Drittel der unnötigen Eingriffe verhindern konnte.
- Reduzierung von falsch-positiven und falsch-negativen Ergebnissen- KI zur Krebserkennung wird die diagnostische Präzision erhöhen und die Anzahl falsch positiver und falsch negativer Ergebnisse verringern. Dank der Forschung zur Brustkrebserkennung haben wir Beweise dafür. Eine von zehn Patientinnen, deren Mammographien von Ärzten untersucht werden, weist falsch positive Ergebnisse auf, was sie dazu zwingt, sich belastenden Verfahren und unnötigen invasiven Tests zu unterziehen. Das Forschungsteam von Google hat eine Software entwickelt, die KI nutzt, um falsch positive und falsch negative Mammographieergebnisse um 6 % bzw. 9 % zu reduzieren. Ein anderes Forscherteam hat einen KI-Algorithmus zur Erkennung von Brustkrebs entwickelt. Dieser Algorithmus half Radiologen, die Anzahl falsch positiver Ergebnisse während einer Untersuchung um 37,3 % zu senken.
Herausforderungen für KI in der Onkologie und Zukunftsaussichten
Komplexe nichtlineare Interaktionen, Fehlertoleranz, gleichzeitige verteilte Verarbeitung und Lernen sind alles Aufgaben, die KI mit Leichtigkeit bewältigen kann. Dies liegt an ihren Vorteilen der Selbstanpassung, der gleichzeitigen Verarbeitung quantitativer und qualitativer Informationen und validierten Ergebnissen aus zahlreichen klinischen Studien in zahlreichen Bereichen. Es besteht kein Zweifel, dass KI in der klinischen Versorgung auf vielfältige Weise eingesetzt wird. Sie nutzt die verschiedenen Facetten der klinischen Variabilität voll aus und behebt gleichzeitig den derzeitigen Mangel an Universalität und Objektivität in Expertensystemen. Krankenhäuser können mithilfe von KI junge Ärzte in klinischer Diagnose und Entscheidungsfindung schulen. Eine wachsende Zahl akademischer Arbeiten diskutiert die bemerkenswerten Diagnose- und Prognosefähigkeiten von ML-basierten Computersystemen.
Um ihre Anwendung in der Krebsdiagnose und -prognose sicherzustellen, muss die KI-Technologie einige erhebliche Schwierigkeiten überwinden. Beispielsweise können Rohdaten aus medizinischen Bildgebungsverfahren nicht verwendet werden. Die Verarbeitung und Extraktion von Informationen aus den Bilddaten ist unerlässlich. Weitere Studien sind erforderlich, um die Ergebnisse der Gewichtungskoeffizienten in neuronalen Netzwerkmodellen zu interpretieren, die aufgrund der technologischen Entwicklung und der weit verbreiteten Anwendung validiert und berechnet wurden und über angemessene Konfidenzintervalle verfügen. Der Bereich der klinischen Medizin wird aufgrund der verstärkten Forschung wahrscheinlich häufiger auf neuronale Netzwerke zurückgreifen. Obwohl der Wert der KI in dieser Branche anerkannt ist, müssen Informatiker und Mediziner zusammenarbeiten, um sicherzustellen, dass interdisziplinäre Mitarbeiter geschult werden und zusammenarbeiten. Mediziner können dann das Potenzial dieser Technologie kostengünstig und praktisch nutzen. Datenschutz und Datensicherheit sind ein großes Problem im Hinblick auf die Zukunft der KI in der Medizin. Obwohl „Big Data“ und ML-basierte Lösungen in den letzten Jahren für viel Aufregung gesorgt haben, gibt es derzeit nur sehr wenige Fälle, die zeigen, wie sich die KI auf die klinische Praxis ausgewirkt hat.
Data Bridge Market Research analysiert, dass der Markt für Krebsdiagnostik im Prognosezeitraum voraussichtlich einen Wert von 28,21 Milliarden USD erreichen wird, was einer durchschnittlichen jährlichen Wachstumsrate (CAGR) von 7,29 % im Jahr 2029 entspricht. Der Anstieg der Krebsfälle bietet dem Markt Wachstumschancen. Krebs ist die zweithäufigste Todesursache weltweit und wird bis 2020 10 Millionen Todesfälle verursachen. Krebs ist für etwa ein Sechstel aller Todesfälle weltweit verantwortlich (Quelle: Weltgesundheitsorganisation). Im Jahr 2020 wurden 19,3 Millionen neue Krebsfälle gemeldet, und diese Zahl wird bis 2040 voraussichtlich auf 30,2 Millionen steigen. Dieser Anstieg der Krebsinzidenz ist auf die wachsende geriatrische Bevölkerung sowie die Gesamtbevölkerung zurückzuführen.
Weitere Informationen zur Studie finden Sie unter:https://www.databridgemarketresearch.com/de/reports/global-cancer-diagnostics-market