- Einer aktuellen Studie zufolge ist Europa eine der Spitzenregionen für Innovationen im Energiebereich.
- Eine der treibenden Kräfte hinter der Umstellung auf kohlenstoffarme Energie sind Elektroautos.
Data Bridge Market Research analysiert, dass der Markt für Ladestationen für Elektrofahrzeuge im Jahr 2021 auf 6,97 Milliarden USD geschätzt wurde und bis 2029 voraussichtlich 167,52 Milliarden USD erreichen wird, was im Prognosezeitraum 2022 bis 2029 einer durchschnittlichen jährlichen Wachstumsrate von 48,80 % entspricht. Die wachsende Beliebtheit und Nutzung von Elektrofahrzeugen hat die Notwendigkeit der Entwicklung der Ladeinfrastruktur hervorgehoben. China, die Vereinigten Staaten und Deutschland beispielsweise investieren stark in die Ladeinfrastruktur für Elektrofahrzeuge (EV) sowie in Forschung und Entwicklung für schnellere und effizientere Ladetechniken. ABB (Schweiz), Shell plc (Großbritannien), ChargePoint (USA), Tesla (USA), BYD (China), bp Chargemaster (Großbritannien), Webasto Thermo & Comfort (Deutschland), Schneider Electric (Frankreich), Blink Charging Co. (USA), Groupe Renault (Frankreich), Phihong USA Corp. (USA) und viele andere sind einige der wichtigsten Akteure auf dem Markt.
Weitere Informationen zur Studie finden Sie unter: https://www.databridgemarketresearch.com/de/reports/global-electric-vehicle-charging-stations-market
Einer der wesentlichen Schritte zur Lösung der durch die Klimakatastrophe verursachten Probleme ist der Übergang zu kohlenstoffarmer Energie (LCE). Die Temperaturgrenzen des Pariser Klimaabkommens können überschritten werden, wenn die Emissionen nicht gesenkt und die Nutzung sauberer Energie nicht ausgeweitet wird. Laut der zweiten Studie über die Entwicklung der Technologien, die zur Unterstützung des Übergangs zu grüneren Energieformen erforderlich sind, die vom Europäischen Patentamt (EPA) und der Internationalen Energieagentur (IEA) veröffentlicht wurde, ist dies der Fall. Das EPA und die IEA haben internationale Patentdatenbanken durchforstet, um Muster bei Innovationen zu finden, und Fälle gezählt, in denen Patente bei mehreren Ämtern angemeldet wurden, sogenannte internationale Patentfamilien, um die bisher erzielten Fortschritte (IPFs) zu messen. Laut dem Papier „bieten diese Patentdaten frühe Indikatoren für technologische Fortschritte, die sich mit Sicherheit auf die Wirtschaft auswirken werden, und können somit veranschaulichen, wie Innovationen die Energiewende vorantreiben.“
Abb. 1: Globales Wachstum kohlenstoffarmer Energie
Quelle: Europäisches Patentamt
Zwischen 2014 und 2016 verlangsamte sich der Ausbau von IPFs für grüne Energie. Dem EPA/IEA-Bericht zufolge nimmt er jedoch wieder zu. Darüber hinaus fällt der Anstieg der LCE-bezogenen Patente mit einem Rückgang der Nutzung fossiler Brennstoffe zusammen.
Künstliche Intelligenz (KI) revolutioniert, wie in jeder Branche, die Energie- und Versorgungswirtschaft. Um sicherzustellen, dass Strom genau dann und dort bereitgestellt wird, wo er benötigt wird, und dabei möglichst wenig Abfall entsteht, wird sie eingesetzt, um den Bedarf abzuschätzen und die Verteilung der Ressourcen zu steuern. Dies ist für den Sektor der erneuerbaren Energien von entscheidender Bedeutung, da erneuerbare Energien häufig nicht für die Langzeitspeicherung geeignet sind und nach ihrer Erzeugung so schnell wie möglich genutzt werden müssen. Laut dem Weltwirtschaftsforum wird KI für den weltweiten Umstieg auf erneuerbare Energien von entscheidender Bedeutung sein. Eine Steigerung der Effizienz wird durch präzisere Vorhersagen von Angebot und Nachfrage erzielt.
Auch dezentrale Modelle der Stromerzeugung und -verteilung ersetzen zentrale Modelle. Bei diesen Modellen wird mehr Strom von lokalisierten, kleineren Stromnetzen (wie Solarparks) erzeugt, und die Koordinierung der Integration dieser Netze erfordert ausgefeilte KI-Algorithmen. Geplant ist der Aufbau einer „intelligenten Koordinierungsschicht“, die zwischen der Strominfrastruktur und den Gebäuden liegt, in denen Menschen und Dinge Strom verbrauchen.
Im Jahr 2022 können wir mit weiteren Innovationen von Startups rechnen, die KI auf neue Weise nutzen. So hat Likewatt in Deutschland beispielsweise Optiwize entwickelt, einen Dienst, der Kohlendioxidemissionen und Stromverbrauch schätzt, damit Verbraucher die Auswirkungen ihres Stromverbrauchs in Echtzeit überwachen und fundiertere Entscheidungen über ihre Energieversorgung treffen können. Um die Effizienz bei der Erzeugung erneuerbarer Energien zu steigern, entwickeln andere Unternehmen Technologien für die vorausschauende Wartung. Ein stärker integriertes und elektrifiziertes Energiesystem mit verstärkter Interaktion zwischen den Sektoren Energie, Transport, Industrie und Bau ist das Ergebnis der Bemühungen, das weltweite Energiesystem zu dekarbonisieren. Ein hoher Grad an Dezentralisierung im Energiesektor ist auch auf die Bemühungen zurückzuführen, die Energieversorgung zu dekarbonisieren. Um dieses zunehmend komplexe System zu verwalten und es für die geringsten Treibhausgasemissionen zu optimieren, bedarf es eines deutlich höheren Maßes an Zusammenarbeit und Anpassungsfähigkeit aller Akteure des Sektors, einschließlich der Verbraucher.
Mit potenziellen Anwendungen, die von der Optimierung und effektiven Integration variabler erneuerbarer Energiequellen in das Stromnetz über die Unterstützung eines proaktiven und autonomen Stromverteilungssystems bis hin zur Erschließung neuer Einnahmequellen für Flexibilität auf der Nachfrageseite reichen, hat KI ein erhebliches Potenzial, eine zuverlässige und kostengünstigste Energiewende zu unterstützen und zu beschleunigen. Die Suche nach Hochleistungsmaterialien, die die Grundlage für die neuesten nachhaltigen Energie- und Speichertechnologien bilden, kann erheblich vom Einsatz von KI profitieren. Trotz ihres Potenzials wird KI jedoch gelegentlich im Energiesektor eingesetzt, hauptsächlich in experimentellen Programmen zur proaktiven Anlagenwartung. Obwohl KI effektiv ist, hat sie ein viel größeres Potenzial, die weltweite Energiewende zu beschleunigen, als derzeit angenommen wird. Im Folgenden wird erläutert, wie sich KI über eine breite Palette von Anwendungen auf den Energiesektor auswirken wird:
Abb. 2: Top-Anwendungen von KI in der Energiebranche
- Smart Grids- Um „intelligent“ zu werden, können Netze jetzt mit Sensoren, Datenanalysetools, Energiespeichersystemen, Energiemanagementplattformen und anderen Energietechnologien verbunden werden. Energieversorger können intelligente Netze nutzen, um Daten zum Energieverbrauch von jedem Netzgerät zu sammeln und Energieeffizienzprojekte für ihre Kunden zu erstellen. Darüber hinaus ermöglicht es Energieunternehmen eine nahezu Echtzeitüberwachung des Energieverbrauchs und der Energieflüsse. Mit automatisierten Laststeuerungssystemen, die während der Spitzenzeiten die Energiezufuhr abschalten können, können Energieunternehmen den Energieverbrauch minimieren. Dadurch können sowohl Haushalte als auch Energieversorger Energie sparen. Ein Mikronetz ist ein kleines Stromnetz, das unabhängig vom Hauptnetz funktionieren kann. KI und maschinelles Lernen werden von Mikronetz-Steuerungssystemen verwendet, um den Energieverbrauch zu optimieren und den Energiefluss zu steuern. Da sie in Notfällen Energiesicherheit bieten und die Integration erneuerbarer Energiequellen in das Netz einfacher machen als herkömmliche Energienetze, erfreuen sich Mikronetze zunehmender Beliebtheit.
- Netzsicherheit und -management- KI wird eingesetzt, um Energieflüsse innerhalb und zwischen Gebäuden, Unternehmen, Speicherbatterien, erneuerbaren Energiequellen, Mikronetzen und dem Hauptstromnetz zu verwalten, um Energiesysteme zu optimieren. Dies verringert die Energieverschwendung und schärft gleichzeitig das Bewusstsein der Verbraucher für den Energieverbrauch. Obwohl intermittierende erneuerbare Energiequellen wie Wind und Sonne immer beliebter werden, sind diese Energiequellen nicht immer verfügbar, wenn sie benötigt werden. Da das Stromnetz die Energie in Echtzeit verwalten muss, während sie erzeugt wird, stellt dies eine Herausforderung dar. Energieunternehmen können mithilfe von KI und maschinellem Lernen vorhersagen, wann erneuerbarer Strom verfügbar sein wird, und die Stromnetze entsprechend verwalten. Roboter werden auch für Energieinstallationen, die Netzwartung und die Überwachung der Energieerzeugung und des Energieverbrauchs eingesetzt. Um Pipelines, Windturbinen und andere Energieinfrastrukturen zu reparieren, können Roboter eingesetzt werden. Energieunternehmen können die Effizienz weiter steigern und Kosten senken, indem sie diese Prozesse automatisieren. Ein hochentwickeltes System wie das Stromnetz ist für Hacker anfällig. Indem sie Cyberangriffe vereiteln, bevor sie auftreten, können KI und maschinelles Lernen die Sicherheit der Strominfrastrukturen erhöhen. Zu diesem Zweck werden Datenanalysen eingesetzt, um Trends in Energiedaten zu erkennen, die auf einen Cyberangriff hinweisen könnten. KI und maschinelles Lernen können eingesetzt werden, um auf einen Cyberangriff zu reagieren, sobald dieser erkannt wurde.
- Stromdiebstahlerkennung- Stromdiebstahl und -betrug kosten den Energie- und Versorgungssektor jährlich bis zu 96 Milliarden Dollar, wobei allein in den USA Verluste von bis zu 6 Milliarden Dollar entstehen. Der illegale Bezug von Energie aus dem Netz wird als Stromdiebstahl bezeichnet. Die absichtliche Verfälschung von Energiedaten oder des Energieverbrauchs wird als Energiebetrug bezeichnet. Diese Anomalien können von Energieunternehmen mithilfe von KI und maschinellem Lernen automatisch gefunden und zur Lösung gekennzeichnet werden. Energieunternehmen können dies tun, um ihre Ressourcen zu schützen, Energieverschwendung zu reduzieren und finanzielle Einsparungen zu erzielen.
- Verbesserte und gesteigerte Produktion- Auch der Energiesektor nutzt KI und maschinelles Lernen, um die Produktion zu steigern. So werden beispielsweise von Öl- und Gaskonzernen Algorithmen des maschinellen Lernens eingesetzt, um Bohrlöcher besser zu platzieren und die Produktion zu steigern. Diese Unternehmen können durch die Analyse von Daten aus seismischen Untersuchungen und anderen Quellen effektiver entscheiden, wo nach Öl und Gas gebohrt werden soll. Dies wird die Energieeffizienz verbessern und zu einem saubereren, effizienteren Energiesystem führen, das für Energieversorger einfacher zu verwalten sein wird.
- Energiespeicherung und prädiktive Analytik- Bis 2030 wird der Markt für Energiespeicherung voraussichtlich um das Zwanzigfache wachsen. Intelligente Energiespeichertechnologien können in das Energienetz integriert werden, um die Effizienz des Energiemanagements zu verbessern. Energieunternehmen können jetzt Energie liefern, wenn sie benötigt wird, selbst wenn ihre aktuelle Energieversorgung nicht ausreicht, indem sie Energiespeicher zum Bau virtueller Kraftwerke nutzen. Dies verringert die Notwendigkeit für Energieunternehmen, brandneue Kraftwerke zu bauen. Zukünftige Änderungen des Energiebedarfs können mithilfe prädiktiver Analysen vorhergesagt werden. Die entsprechende Infrastruktur kann dann gebaut werden, um für die Zukunft zu planen und den Energiebedarf zu decken. Energieunternehmen können mithilfe prädiktiver Analysen auch vorhersagen, wann eine Maschine oder ein Gerät wahrscheinlich ausfallen wird. Dies hilft nicht nur dabei, unerwartete Ausfälle zu verhindern, sondern hilft Unternehmen auch, Geld zu sparen, indem sie sich auf den Austausch teurer und wichtiger Energieanlagen vorbereiten und unvorhergesehene Wartungsaufgaben vermeiden können.
- Kundenbindung- Der Energiesektor beginnt, KI und maschinelles Lernen für die Kundeninteraktion zu nutzen. Energieunternehmen können ihren Kunden durch den Einsatz von KI und maschinellem Lernen Informationen geben, die auf ihre Anforderungen zugeschnitten sind. Dazu gehört die Analyse von Kundendaten, um ihren Energieverbrauch zu verstehen und ihnen dann Informationen zu geben, wie sie ihre Verbrauchsgewohnheiten ändern können, um weniger Energie zu verbrauchen.
- Energiehandel- Da Energie sofort geliefert werden muss, unterscheidet sich der Handel mit Energie von anderen Rohstoffen. Energiehändler stehen deshalb vor einer Herausforderung, aber es gibt auch eine Chance, da die Energiemärkte immer liquider werden. Indem die Energienachfrage prognostiziert und Händlern Zugang zu Echtzeit-Preisdaten gewährt wird, können KI und maschinelles Lernen genutzt werden, um die Effizienz des Energiehandelsmarktes zu verbessern. Energiehändler können diese Informationen dann nutzen, um fundiertere Entscheidungen darüber zu treffen, wann sie Energie kaufen und verkaufen. Stromabnahmeverträge (Power Purchase Agreements, PPAs), ein Finanzvertrag zwischen Energiekäufern und -verkäufern, wurden mithilfe der Blockchain-Technologie entwickelt. Diese Verträge sind dank der Blockchain-Technologie effektiver, da sie Transaktionen beschleunigt, weniger kostet als herkömmliche PPA-Plattformen und auf einer sehr sicheren Plattform basiert.
Der Markt für Steckverbinder für erneuerbare Energien wird im Prognosezeitraum 2021 bis 2028 voraussichtlich um 6,10 % wachsen. Der Bericht von Data Bridge Market Research zum Markt für Steckverbinder für erneuerbare Energien bietet Analysen und Erkenntnisse zu Faktoren wie der zunehmenden Nutzung erneuerbarer Energiequellen. Hohe Installationskosten und Erschöpfung der natürlichen Ressourcen wirken sich im oben genannten Prognosezeitraum als Markthemmnisse für Steckverbinder für erneuerbare Energien aus. Die zunehmende globale Erwärmung und das schnelle Bevölkerungswachstum werden im oben genannten Prognosezeitraum die größte Herausforderung für das Wachstum des Marktes für Steckverbinder für erneuerbare Energien darstellen. Der Markt für Steckverbinder für erneuerbare Energien ist nach Typ, Energiequelle, Anwendung und Endverbraucher segmentiert. Der asiatisch-pazifische Raum wird den Markt für Steckverbinder für erneuerbare Energien aufgrund zunehmender Energiereformen in der Region sowie der wachsenden Zahl von Vertriebskanälen dominieren, während Nordamerika im Prognosezeitraum 2021–2028 aufgrund der vorherrschenden günstigen Richtlinien und wachsenden Standards für erneuerbare Energien voraussichtlich wachsen wird.
Weitere Informationen zur Studie finden Sie unter: https://www.databridgemarketresearch.com/de/reports/global-renewable-energy-connector-market
Wie wird KI die Energiewende beschleunigen?
In der neuen IPCC-Bewertung wird unmissverständlich festgestellt, dass dringend mehr Maßnahmen erforderlich sind, um katastrophale langfristige Klimaauswirkungen zu verhindern. Fossile Brennstoffe liefern immer noch mehr als 80 % der weltweiten Energie, daher muss sich jede Initiative auf den Energiesektor konzentrieren. Glücklicherweise verändert sich das Energiesystem bereits; die Produktion erneuerbarer Energien wächst aufgrund sinkender Kosten und steigenden Interesses der Investoren schnell. Es bleibt jedoch nicht mehr viel Zeit und das Ausmaß und die Kosten der Dekarbonisierung des gesamten Energiesystems sind immer noch enorm. Die meisten Übergangsbemühungen der Energiebranche konzentrierten sich bisher auf Hardware: neue kohlenstoffarme Infrastruktur, die die alten kohlenstoffintensiven Systeme ersetzen wird. Ein weiteres wichtiges Instrument für den Wandel, digitale Technologien der nächsten Generation, insbesondere künstliche Intelligenz, haben sehr wenig Aufmerksamkeit und Finanzierung erhalten (KI). Diese leistungsfähigen Technologien haben das Potenzial, die Energiewende zu beschleunigen, indem sie schneller in großem Maßstab eingeführt werden als neue Hardwarelösungen. Drei große Trends treiben das Potenzial der KI voran, die Energiewende zu beschleunigen:
- Historische Dekarbonisierungsprozesse beginnen in energieintensiven Branchen wie Energie, Transport, Schwerindustrie und Gebäude gerade erst, da der öffentliche Druck zu einer schnellen Reduzierung der CO2-Emissionen zunimmt. Diese Transformationen haben ein enormes Ausmaß. Laut BloombergNEF werden allein im Energiesektor Infrastrukturinvestitionen zwischen 92 und 173 Billionen US-Dollar erforderlich sein, um bis zum Jahr 2050 Netto-Null-Emissionen zu erreichen. Daher können selbst bescheidene Steigerungen bei sauberer Energie und kohlenstoffarmer industrieller Flexibilität, Effizienz oder Kapazität zu Wertschöpfung und Einsparungen in Billionenhöhe führen.
- Der Energiesektor entwickelt sich zur Hauptsäule der weltweiten Energieversorgung, da Elektrizität immer mehr Industrien und Anwendungen versorgt. Um sicherzustellen, dass Stromnetze sicher und zuverlässig verwaltet werden können, wird der zunehmende Einsatz erneuerbarer Energien bedeuten, dass mehr Strom aus sporadischen Quellen (wie Sonne und Wind) geliefert wird, was die Notwendigkeit von Prognosen, Koordination und flexiblem Verbrauch erhöht.
- Der rasche Ausbau der dezentralen Stromerzeugung, der dezentralen Speicherung und verbesserter Möglichkeiten zur Laststeuerung wird durch die Umstellung auf kohlenstoffarme Energiesysteme vorangetrieben. Diese Möglichkeiten müssen durch stärker vernetzte, transaktionale Stromnetze koordiniert und integriert werden.
Das Energiesystem und die energieintensiven Sektoren stehen bei der Bewältigung dieser Trends vor enormen strategischen und operativen Hürden. KI kann den Beteiligten am Energiesystem dabei helfen, Muster und Erkenntnisse in Daten zu erkennen, aus Erfahrungen zu lernen und die Systemleistung im Laufe der Zeit zu verbessern sowie potenzielle Ergebnisse komplexer, multivariater Situationen vorherzusagen und zu modellieren, indem sie eine intelligente Koordinationsebene für die Erzeugung, Übertragung und Nutzung von Energie schafft. In mehreren Bereichen der Energiewende profitieren KI bereits von greifbaren Vorteilen, darunter die Prognose erneuerbarer Energien, Netzbetrieb und -optimierung, verteilte Energieanlagen und Koordination des Nachfragemanagements sowie Materialinnovation und -entdeckung. Obwohl der Einsatz von KI im Energiesektor bisher vielversprechend war, gab es weder viel Innovation noch breite Akzeptanz. Dies bietet eine fantastische Chance, den Übergang zum zukünftigen Energiesystem, das wir brauchen, zu beschleunigen – eines, das emissionsfrei, äußerst effizient und vernetzt ist. Die Fähigkeit von KI, die globale Energiewende zu beschleunigen, ist viel größer als bisher angenommen, aber dieses Potenzial kann nur ausgeschöpft werden, wenn branchenweite KI-Innovation, -Einführung und -Zusammenarbeit verstärkt werden.
Welche Rolle spielt KI für die Belastbarkeit von Netzen für erneuerbare Energien?
- Um die dezentralen Netze während der globalen Umstellung auf erneuerbare Energien zu verwalten, ist künstliche Intelligenz (KI) erforderlich.
- KI kann Energienutzung und -speicherung optimieren, um Kosten zu senken und Stromangebot und -nachfrage in Echtzeit in Einklang zu bringen.
- Um belastbare Stromquellen zu sichern, Innovationen zu fördern und den Zugang zu demokratisieren, bedarf es einer Technologie-Governance
Um die heutigen Herausforderungen mit Technologien aus der Vergangenheit zu lösen, wurden Forderungen laut, die Regierung müsse in die Netzinfrastruktur investieren, um lange Übertragungsleitungen von einer zentralen Stromversorgungsquelle aus zu modernisieren. Ein besserer, fortschrittlicherer Ersatz existiert bereits: Künstliche Intelligenz (KI), die verteilte erneuerbare Energiequellen nutzt. Daher ist KI in zweierlei Hinsicht der Schlüssel zur Förderung erneuerbarer Energien:
Abb. 3: KI-Unterstützung bei der Förderung erneuerbarer Energien
- Erhöhte Komplexität im Bereich erneuerbarer Energien- Mit der zunehmenden Elektrifizierung der Welt wird mehr Energie aus dezentralen, erneuerbaren Quellen erzeugt. Denken Sie an Batterien, private Solarmodule, Windparks und Mikronetze. Auch wenn sie für die Nachhaltigkeit von Vorteil sind, werden sie die Energieinfrastruktur weltweit verkomplizieren. Es wird ein heikler Balanceakt nötig sein, um Angebot und Nachfrage in Einklang zu bringen, ohne das Netz in den nächsten 10 bis 15 Jahren durch die zunehmende Verbreitung von Elektrofahrzeugen, die Elektrifizierung von Heizsystemen und die Verbreitung von dezentralen Energieressourcen (DERs) wie Windturbinen und Solarmodulen in die Knie zu zwingen. Nehmen Sie Australien als Beispiel. Bis 2030 und 2050 werden voraussichtlich 30 % bzw. 60 % der Wohn-, Gewerbe- und Industriegebäude des Landes Solarenergie nutzen. Ähnliche Situationen treten weltweit auf, da immer mehr gewerbliche, staatliche und private Verbraucher ihren eigenen Strom mithilfe von Solarmodulen produzieren, ihn in Batterien für den Einsatz in Elektrofahrzeugen speichern oder ihn ins Netz einspeisen. Unseren Prognosen zufolge werden bis 2030 in Europa 89 Millionen Energiespeichergeräte am Netz sein, verglichen mit der aktuellen Schätzung von 36 Millionen (siehe Abbildung unten). Wenn Millionen einzelner Geräte Strom senden und herunterladen, kann es in den Stromnetzen zu einem Chaos kommen. Mit anderen Worten: Die Versorgungsunternehmen müssen ihre Geschäftsmodelle ändern, da sie immer weniger von einem einzigen Versorgungsunternehmen bei der Erzeugung und Übertragung von Strom abhängig sind. Schon bald werden sie nicht mehr die einzige Energiequelle sein; stattdessen müssen sie das Netz im Gleichgewicht halten, indem sie Elektronen aus verschiedenen Quellen und Speichersystemen übertragen, um Energie sekundengenau und effizient dorthin zu liefern, wo sie benötigt wird.
- KI soll Millionen von Netzen ausbalancieren - Dezentrale Energiequellen können mithilfe von KI-Software den von ihnen erzeugten Überschussstrom ins Netz einspeisen, und Versorgungsunternehmen können diesen Strom dorthin leiten, wo er benötigt wird. Ähnlich wie bei der Energiespeicherung, die bei geringer Nachfrage in Haushalten, Büros, Autos und anderen Gebäuden überschüssige Energie speichern kann, kann KI diese Energie nutzen, wenn die Erzeugung unzureichend oder unmöglich ist. In diesem System gibt es viele bewegliche Teile; daher sind Koordination, Prognose und Optimierung erforderlich, um die Netzstabilität aufrechtzuerhalten. Ein Versorgungsunternehmen ist wie ein Dirigent, der das Orchester im Takt hält, während KI die Symphonie in Echtzeit komponiert, wenn man sich DERs als einzelne Musiker vorstellt. Infolgedessen kann ein KI-basiertes System die Spielregeln ändern. Ein Netz, das bei unvorhergesehenen Ereignissen widerstandsfähiger und flexibler ist, ist das Ergebnis der Umstellung von einem infrastrukturlastigen System auf ein KI-zentriertes System. Prognosen und Steuerung sind jetzt in Sekunden statt in Tagen möglich.
In Bezug auf dezentrale Energieressourcen müssen Versorgungsunternehmen, Entscheidungsträger und Regulierungsbehörden anfangen, über ihre jeweiligen Rollen nachzudenken. Die Verwaltung und Koordination des Flickenteppichs verteilter Energieerzeuger wird von entscheidender Bedeutung sein. Versorgungsunternehmen können in dieser Situation die Führung übernehmen, da sie mit einer sinkenden Zahl von Kunden zu kämpfen haben, die Strom kaufen, da immer mehr Haushalte und Unternehmen beginnen, ihren eigenen Strom zu produzieren, dank Solarmodulen auf den Dächern und ähnlichen Technologien. Es ist keine Zeit zu verlieren, denn der Klimawandel wird der Welt weiterhin extremeres Wetter bescheren. Die aktuelle wirtschaftliche Lage und langwierige politische Diskussionen, wie sie in den USA zu erwarten sind, werden die notwendigen Investitionen wahrscheinlich nachlassen lassen. Die beste Vorgehensweise besteht nicht darin, in zentralisierte Netze mit ihrem Netzwerk aus langen Kabeln und Transformatoren zu investieren; vielmehr sollten Regierungen Pläne für ein Netz machen, in dem Gemeinden und Gebäude ihren eigenen Strom produzieren, der dann in Echtzeit von Software verwaltet wird. Die politischen Entscheidungsträger sollten über öffentliche Finanzierung der Produktion erneuerbarer Energien sowie Anreize für eine stärker verteilte Energieerzeugung in der Privatwirtschaft und in Haushalten nachdenken. Und um Interoperabilität, Transparenz und fairen Zugang im gesamten Energieumfeld zu gewährleisten, brauchen wir eine weltweit anerkannte Governance von KI-Software.
Abschluss
Ein proaktiver und kooperativer Ansatz zur KI-bezogenen Technologie-Governance wäre für den Energiesektor von Vorteil. Die kommenden Jahre werden wichtig sein, um Innovationen in diesem Bereich zu fördern und den Zugang zu innovativen kohlenstoffarmen Technologien im gesamten Energiesystem zu demokratisieren. Falls dies nicht bereits zuvor akzeptiert wurde, muss die Branche gemeinsame Datenstandards als Voraussetzung dafür und für die Digitalisierung im Allgemeinen implementieren. Eine verstärkte Zusammenarbeit zwischen Akteuren der Energiebranche kann in Form gemeinsamer F&E-Projekte, des Austauschs bewährter Verfahren zur Umsetzung von KI-Konzepten und der Präsentation von Anwendungsbeispielen erfolgen. Die Zusammenarbeit könnte auch das Vertrauen zwischen Entwicklern von KI-Technologien, Verbrauchern, Regulierungsbehörden und anderen Interessengruppen stärken, die mit KI-Systemen interagieren. Netzregulierungsbehörden und -betreiber müssen das Potenzial einer Vielzahl digitaler Technologien (wie maschinelles Lernen, Quantencomputer, Blockchain-Technologie usw.) berücksichtigen, um die Art und Weise des Netzbetriebs zu verbessern, da die Verwaltung und der Betrieb von Netzen immer komplexer werden, insbesondere auf der Ebene des Verteilnetzes. Die Notwendigkeit, das Netzmanagement zu überdenken, und die Möglichkeit, neue und dezentralere Designs für Netzzugang, Betrieb und Managemententscheidungen zu entwickeln, ergeben sich aus der Dekarbonisierung und Dezentralisierung des Stromsystems. Die traditionelle manuelle Befehls- und Kontrollverwaltungsmethode (mit einem zentralen Systembetreiber) sollte durch eine technologiegestützte dezentrale Entscheidungsfindung ersetzt werden, die schnellere Entscheidungen ermöglicht und kleinere verteilte Vermögenswerte automatisch in das Netz einbindet (beispielsweise mithilfe von Blockchain, digitaler Identität und Smart Contracts). Regierungen könnten öffentliche und industrielle Stellen anweisen oder ihnen Anreize bieten, zentrale Datenbanken mit Industriedaten als Teil dieser gerechten Datenverteilung zu verwalten und zu finanzieren. Diese Datensätze würden das Trainieren von KI-Algorithmen ermöglichen und könnten möglicherweise Algorithmusverzerrungen verringern, die häufig durch minderwertige oder spärliche Daten verursacht werden.
Der Anstieg der Nachfrage nach energieeffizienten und langlebigen Systemen hat zu einem Anstieg der Nachfrage nach Energiegewinnungssystemen geführt. Data Bridge Market Research analysiert, dass der Markt für Energiegewinnungssysteme im Prognosezeitraum 2021–2028 eine durchschnittliche jährliche Wachstumsrate (CAGR) von 10,04 % aufweisen wird. Dies bedeutet, dass der aktuelle Marktwert bis 2028 auf 1.042,5 Millionen USD steigen wird. Ein Energiegewinnungssystem ist die Technologie, die Energie aus der Umgebung in nutzbare elektrische Energie umwandelt. Dieses System entzieht der Umgebung kleine Mengen Energie, die sonst in Form von Wärme, Licht, Schall oder Vibration verloren gehen würden. Nordamerika dominiert den Markt aufgrund der zunehmenden Einführung und Anwendung von Energiegewinnungssystemen in Gebäuden und Haushaltsgeräten. Auch das Wachstum im Industrie- und Automobilsektor hat das Wachstum des Marktes in den Ländern dieser Region angekurbelt. Die USA leisten hier den größten Beitrag.
Weitere Informationen zur Studie finden Sie unter: https://www.databridgemarketresearch.com/de/reports/global-energy-harvesting-system-market