概述

可以创建音频、文本、代码、视频、照片和其他数据等内容的人工智能被称为生成人工智能。生成式人工智能采用机器学习算法根据训练数据集生成输出,而不是标准人工智能算法,后者可用于在训练数据集中查找模式并做出预测。生成式人工智能的输出可以是与提示相同的媒体(文本到文本),也可以是不同的媒体(文本到图像或图像到视频)。生成式 AI 应用程序 ChatGPT、Bard、DALL-E、Midjourney 和 DeepMind 是一些著名的例子。具体来说,生成式人工智能模型会被输入大量现有内容来训练模型生成新内容。他们学习根据概率分布识别数据集中的潜在模式,并在给出提示时创建类似的模式(或基于这些模式的输出)。

The Role of Generative AI in Transforming Business

例如,

此外,机器学习的一部分称为深度学习或生成人工智能,它使用神经网络,使其能够处理比传统机器学习更复杂的模式。受人脑的启发,神经网络不一定需要人类监督或干预来区分训练数据中的差异或模式。

根据 Data Bridge Market Research 的数据,人工智能市场预计将在 2021 年至 2028 年的预测期内实现 26.1% 的复合年增长率。Data Bridge Market Research 的报告提供了广泛的分析和对市场的更好洞察,强调了预计在预测期内对其增长产生显著影响的因素。要了解有关该研究的更多信息,请点击以下链接

https://www.databridgemarketresearch.com/zh/reports/global-artificial-intelligence-market

什么是生成式人工智能?

生成式人工智能是指深度学习模型,可以在出现提示时利用原始数据生成统计上可能的输出。生成模型多年来一直在统计学中用于分析数值数据。然而,深度学习的兴起使得将它们扩展到图像、语音和其他复杂数据类型成为可能。实现这一跨界壮举的第一类模型是 2013 年推出的变异自动编码器 (VAE)。VAE 是第一个广泛用于生成逼真图像和语音的深度学习模型。

生成式人工智能可以从现有工件中学习,生成反映训练数据特征的新的、真实的工件。它可以产生各种新颖的内容,例如图像、视频、音乐、语音、文本、软件代码和产品设计。生成式人工智能使用了多种不断发展的技术。最重要的是人工智能基础模型,它们是在大量未标记数据上进行训练的,这些数据可用于不同的任务,并进行额外的微调。创建这些经过训练的模型需要复杂的数学和巨大的计算能力,但它们本质上是预测算法。

AI模型的类型:

模型

类型

图像生成

图像到图像翻译、草图到真实图像、文本到图像翻译、文本到语音

音频生成

配乐编辑、自动调谐

综合数据生成

伪图像和深度伪造

视频生成

 

资料来源:Altexsoft

生成式人工智能之旅

生成式人工智能的风险巨大且变化迅速。 ChatGPT 和类似程序是使用大量向公众提供的数据进行训练的。必须密切关注您的公司如何使用这些平台,因为它们并不旨在遵守一般数据保护法规 (GDPR) 和其他版权法。

企业主采取的关键策略

生成式人工智能已进入商业世界,根据 2022 年全球人工智能采用指数,有 35% 的公司已采用生成式人工智能。包括 ChatGPT 在内的生成式人工智能工具可分析大量数据,以产生传统方法无法提供的独家见解。方法往往无法及时交付。生成式人工智能对商业有着深远的影响,从内容创建自动化到供应链优化和改进的客户服务。通过将机器学习和自然语言处理相结合,生成式人工智能工具使企业能够做出明智的决策、优化运营并增加利润。

生成人工智能和扩展现实是强大的工具,可以通过增强、扩展和扩展人类体验而不是复制或取代人类体验来帮助解决紧迫的社会挑战和业务问题。生成式人工智能可以“生成”文本、语音、图像、音乐、视频,尤其是代码。当这种能力与某人自己的信息源结合起来,用于定制交互的时间、内容和方式时,某人完成工作的容易程度以及软件的可访问性都会大大提高。

生成式人工智能正在改变各行各业,并迅速重塑企业,它能够生成新颖的解决方案、自动化流程并提高决策能力。它是人工智能的一个子集,可以生成原始文本、图形和其他类型的材料。根据调查结果,生成式人工智能是一种强大的工具,可以以多种方式应用于企业。在未来几年,随着技术的进步,生成式人工智能可能会对组织产生更大的影响。

生成式人工智能的应用

人工智能 (AI) 的出现极大地影响了企业运营和管理日常工作流程的方式。多样化人工智能应用和工具的出现使企业能够做出更明智的决策并自动执行重复性任务,从而使运营更加高效和有效。由于生成人工智能功能的最新发展,电子邮件和文字处理等专业生产力应用程序现在可以通过自动化得到增强,以提高效率和准确性。微软在 Teams 高级版中实施 GPT-3.5 是生成式 AI 潜力的一个值得注意的例证。通过自动创建部分、标题和自定义标记,这个有效的工具可以改进会议记录。甚至提及的内容也可能会突出显示,使您可以更轻松地找到对话中最关键的段落。

制作高质量的内容是企业界最艰巨、最耗时的任务之一,无论是制作产品描述、宣传材料,甚至整篇文章。在这种情况下,公司可以在业务中利用生成式人工智能技术,在有限的时间内生成可接受的质量内容。通过利用自然语言处理和机器学习算法,生成式人工智能工具可以评估现有内容并创建符合特定标准的新的高质量内容。这可能涉及语气、风格,甚至目标受众等考虑因素。

客户服务是一个至关重要的领域,ChatGPT 等生成式人工智能工具可以解决具有挑战性的业务问题。由 ChatGPT 提供支持的聊天机器人可以为客户的询问提供及时、准确的答案,从而改善整体客户体验。他们还可以根据客户的购买历史和偏好向他们提供量身定制的建议。

例如,

协助公司的合法运营是最重要的生成式人工智能商业应用之一。企业可以从法律部门使用生成式人工智能工具中获得相当大的优势。通过进行法律研究、审查判例法和制定法律文件的能力,生成式人工智能有潜力使法律团队更有能力、更熟练地运作。

例如,

ChatGPT 等人工智能工具有潜力为企业人力资源运营提供重要支持。 ChatGPT 通过自然语言处理和机器学习技术,可以机械化重复的人力资源杂务,同时为员工的询问提供准确、快速的答案。

例如,企业可以利用生成式人工智能的力量来设计虚拟人力资源助理。该虚拟助理可以帮助员工完成管理休假、管理福利以及向组织介绍新员工等任务。此外,聊天机器人可以根据员工的技能和兴趣为他们提供量身定制的职业发展建议,从而提高员工的参与度和保留率。此外,生成式人工智能可用于在在线入学考试中制定防作弊措施。

商业中的生成式人工智能技术通过揭示人类感知不到的隐藏模式和趋势,在数据分析方面提供了显着的优势。人工智能揭示此类见解的能力使企业有机会发现新的增长领域、优化运营并提高客户满意度。

生成式人工智能的情感分析能力是数据分析中的一个很好的用例。 ChatGPT 等工具可以分析社交媒体数据,以确定客户对品牌、产品或服务的倾向。企业可以通过使用这些信息来充分利用生成式人工智能在业务中的优势。他们可以借助这些数据完善营销策略、深入了解客户并提高客户满意度。此外,生成式人工智能工具有潜力分析大量数据并检测潜在风险。此类分析见解使使用生成式人工智能的企业能够在潜在问题升级之前主动识别和解决问题。通过分析客户反馈和行为,商业中的生成人工智能技术可以识别表明客户流失高风险的模式。此功能允许企业主动解决此类模式,从而通过个性化优惠和激励留住客户

许多组织将生成式人工智能用于业务,特别是为了提高销售额。生成式人工智能 (AI) 作为增加销售额和保持竞争力的一种手段,在商业世界中的重要性日益提高。该技术的一个具体应用是使用生成式语言模型来创建个性化的产品描述,以满足客户的个人需求和偏好。通过分析客户数据和行为,生成式人工智能能够生成独特且引人注目的描述。价格优化是生成式人工智能技术在商业中得到充分运用的另一种方式。通过分析市场趋势、客户行为和竞争对手的价格,生成模型可以为产品或服务生成最优价格。这使企业能够实现收入最大化,同时仍为客户提供价值。

此外,需要客户细分和有针对性的营销活动帮助的公司可以将生成式人工智能用于业务。通过审查客户数据,生成模型可以检测模式并创建有针对性的活动来吸引特定的客户群体。

新产品开发是生成式人工智能在商业中的另一个重要用途。开发创新产品和加快设计流程对于许多公司来说可能是复杂的业务困境。尽管如此,还是有一些创造性的方法来解决这些障碍,其中之一就是利用人工智能驱动的机制。

通过利用人工智能,企业可以快速审查大量数据并根据特定参数进行优化设计。这可以大大减少产品开发的时间和费用,同时仍能确保质量和性能。

例如,

为了解决商业领域复杂的欺诈检测问题,公司可以采用人工智能驱动的工具。这些工具能够主动检测和阻止各种类型的欺诈活动。在商业中使用生成式人工智能的一项有利应用是在伪造身份证件识别领域。这些工具可以快速扫描和验证护照、驾驶执照等身份证明文件,以防止欺诈活动。

此外,公司可以利用人工智能驱动的工具来识别支付欺诈。这些工具审查支付数据并识别可疑交易或模式,使企业能够采取适当的行动并防止欺诈活动。

人工智能驱动的欺诈检测工具可以发挥作用的另一个领域是虚假账户的验证。这些工具会仔细检查用户行为和数据,以发现虚假账户,并阻止他们访问平台或发起欺诈交易。

生成人工智能面临的挑战

生成式人工智能 (AI) 已广泛流行,但企业采用它会带来一定程度的道德风险。随着生成式人工智能成为主流,企业有责任确保他们以合乎道德的方式使用这项技术并减轻潜在的危害。以下是组织在其业务中使用生成式人工智能时可能面临的一些挑战:

结论

虽然生成文本的聊天机器人(例如 ChatGPT)引起了很多关注,但生成式人工智能也可能生成其他类型的材料,例如图形、视频、音频和计算机代码。此外,它还能够分类、修改、总结、响应查询以及为组织创建新材料。通过改变跨业务功能和工作流程的活动级别的工作方式,这些操作中的每一项都有可能提供价值。随着技术的发展和成熟,此类生成式人工智能可以越来越多地集成到企业工作流程中,以自动化任务并直接执行特定操作。然而,生成式人工智能可能会带来各种风险,因为模型可能会由于不完善的训练数据或开发模型的工程师做出的决策而产生算法偏差。此外,模型可以对相同的提示产生不同的答案,从而妨碍用户评估输出的准确性和可靠性的能力。


DBMR 已为超过 40% 的国际财富 500 强企业提供服务,并拥有超过 5000 家客户网络。我们的团队很乐意帮助您解答疑问。访问, https://www.databridgemarketresearch.com/zh/contact

联系我们

了解更多

关于影响和行动的其他见解