概述
“机器人中的生成式人工智能”这一术语描述了在机器人系统的设计、优化和控制中使用生成式人工智能方法。这些方法的示例包括生成对抗网络 (GAN)、变分自动编码器 (VAE) 和其他深度学习模型。这些方法使机器人能够从数据中学习、提出新想法并适应不断变化的环境,从而提高其适应性和效率。
机器人技术和生成式人工智能相结合,具有巨大的潜力,可以改变机器人所能完成的任务。通过将生成式人工智能技术与机器人技术融合,它可以提高机器人的自主性、模仿人类的创造力并实现自适应和无监督学习。由于技术的不断研究和发展,机器人技术中的生成式人工智能主题一直在变化。它有许多可能的用途,例如在医疗保健、制造业、烘焙业和金融机构中。客户满意度和运营效率将受到影响。通过合作,政府、学术机构和企业可以保证道德标准和法律框架跟上生成式人工智能的发展,从而实现负责任和有利的应用。
图 1:生成式人工智能机器人
机器人技术中使用的生成式 AI 方法类型
- 生成对抗网络(GAN): 对抗性训练方法用于同时训练生成器和鉴别器神经网络。鉴别器学习辨别真实样本和生成样本,而生成器学习生成真实的数据样本。GAN 可用于机器人技术,以生成真实的传感器数据、控制策略和其他系统组件
- 变分自动编码器 (VAE): VAE 是一类生成模型,可以训练将数据编码和解码为不同的数据空间,每个数据空间的维度都较低。VAE 有可能通过学习传感器数据、控制策略和机器人系统其他特征的紧凑表示来改善机器人的学习和优化
- 强化学习(RL): 它是一种机器学习,其中代理通过与周围环境的互动以及以奖励或惩罚的形式反馈来获得决策技能。为了学习机器人中的控制策略、路径规划和其他决策任务,可以将生成式人工智能方法与强化学习相结合
- 进化方法(EA): 自然选择是这类优化方法的灵感来源。通过几代迭代改进潜在解决方案,机器人技术中的进化算法 (EA) 可用于优化机器人组件的设计、控制策略以及机器人系统的其他方面
图 2:生成式人工智能机器人的优势
采用生成式人工智能机器人过程中面临的挑战
将生成式人工智能与机器人相结合时,需要考虑的问题和障碍比比皆是。为了保证生成式人工智能在机器人领域的恰当和高效应用,必须仔细考虑部署问题、技术限制和道德考量。
- 集成和部署的困难: 将生成式人工智能融入当前的机器人系统可能具有挑战性。它必须与各种硬件和软件配合使用,并且必须与整个系统架构无缝集成。此外,在实际环境中将生成式人工智能模型应用于机器人时,会出现处理能力、功耗和实时决策问题。此外,将生成式人工智能融入机器人技术提出了关于人机沟通和合作的问题。需要进行大量的规划和思考,以确保机器人能够以安全可靠的方式与人互动和工作
- 不确定性和技术限制:尽管生成式人工智能具有很大的潜力,但仍存在一些未解答的问题和技术限制。产生真正原创和创新作品的能力就是这样一个难题。虽然生成式人工智能模型可以提供出色的结果,但它们通常依赖于预先存在的数据中的模式和实例。追求真正的创造力和创新仍然是一个研究问题。此外,人们对生成式人工智能模型的可靠性和弹性存在疑问。一个重要的担忧是敌对攻击,其中恶意表演者控制人工智能系统。需要不断的研究和开发以确保机器人生成式人工智能的安全性和完整性,这是一个关键特征
- 可扩展性: 由于计算成本高昂,将生成式 AI 模型扩展到大型机器人系统或实时应用可能具有挑战性
- 数据要求: 对于某些机器人应用来说,获取生成式人工智能算法正确训练所需的大量数据可能是一个挑战
- 对伦理学的影响: 在机器人中使用生成式人工智能存在重大的道德问题。确保日益自主和复杂的机器人做出的决定符合道德规范和价值观变得越来越重要。妥善处理问责、隐私和偏见等问题非常重要,以避免任何意外后果或潜在伤害。开发人员、学者和政客必须共同努力,为机器人生成式人工智能的创建和应用制定道德标准
通过积极参与研究并与不同的关联公司合作,采取不同的战略决策(例如合作伙伴关系、协作、合并和收购),这些挑战是可以克服的,甚至可以创造出符合道德且重要的生成式人工智能机器人应用。
生成式人工智能在机器人领域的关键应用
- 机器人设计: 通过生成平衡成本和性能的创新配置,可以应用生成式人工智能方法来优化机器人部件(包括关节、执行器和肢体)的设计。这可能会产生更强大、更高效的机器人系统
- 机器人运动规划与控制: 生成式人工智能的重大影响还延伸到机器人运动规划和控制。机器人可以从大数据集中学习,从而创建针对效率和安全性进行优化的运动计划。机器人可以利用生成算法创建各种逼真的运动轨迹,这有助于它们精确地应对具有挑战性的环境。这对于物流和仓库自动化等应用尤其有用,因为机器人必须在拥挤的区域中穿行并与人和其他物体进行通信。
- 协作和人机交互: 通过使用生成式人工智能,人机交互和协作可以得到改善,从而产生更智能、更易于人类操控的机器人。通过使用生成式人工智能方法,可以训练机器人产生真实的、类似人类的行为,从而实现与人的顺畅沟通和合作。例如,可以使用生成式人工智能创建能够与用户自然交谈并提供定制帮助和支持的聊天机器人和虚拟助手
除了这些用途之外,生成式人工智能还有可能彻底改变许多其他领域,包括工业、医疗保健、金融和教育。由于生成式人工智能的发展和突破,机器人现在可能能够执行困难的工作,适应不断变化的环境,并与人类进行更有意义的互动。
- 测试和模拟: 在部署设计之前,工程师可以使用机器人系统及其设置的真实模拟来测试和改进设计,这些模拟是使用生成式 AI 模型生成的。这可以缩短开发时间和成本,同时提高机器人系统的可靠性。生成算法可能会进入指导机器人运动的系统。Dobb-E 是一款通过 iPhone 视频片段学习任务的机器人,是早期实例之一
- 机器人传感和感知: 机器人技术高度依赖生成式人工智能来提高其感知和传感能力。通过使用生成式建模和生成式对抗网络 (GAN),可以训练机器人生成复制现实世界传感器输入的人工数据。机器人可以通过使用这些人工数据来训练和增强感知算法,从而更好地了解周围环境。例如,生成式人工智能可以帮助提高自动驾驶汽车中物体检测和识别系统的精度,从而提高其可靠性和安全性
近年来,全球聊天机器人市场经历了大幅增长,因为对基于人工智能的聊天机器人的需求不断增长,以提供增强的客户体验。此外,机器人中生成式人工智能的使用率不断提高,以及为获得类似人类的对话体验而构建自学机器人的举措不断增加,这些因素往往会在未来几年促进聊天机器人市场的增长。根据 Data Bridge Market Research 的分析,全球聊天机器人市场预计将在 2021 年至 2029 年期间以 22.10% 的复合年增长率 (CAGR) 增长。
要了解有关该研究的更多信息,请访问:https://www.databridgemarketresearch.com/zh/reports/global-chatbots-market
以下是与机器人领域中的生成式人工智能相关的实例:
- 2024 年 2 月,亚马逊公布了其机器人劳动力扩张的下一阶段计划。该公司表示,新的 Sequioa 系统将仓库不同部分的机器人连接起来,形成一个自主团队,大大提高了运营效率。由于生成式人工智能,机器人和自动化具有很大的潜力。因此,这家科技巨头目前正在为更先进的机器人筹集资金。该公司的工业创新基金将加速对机器人和人工智能公司的投资
- 2023 年 11 月,谷歌的 DeepMind 推出了 Open X-Embodiment,这是一个与 33 所学术机构合作开发的机器人功能数据库。研究人员将该方法与 ImageNet 进行了比较,ImageNet 是 2009 年建立的历史数据库,目前拥有超过 1400 万张照片。从 22 个机器人实例中收集了 500 多个人才和 150,000 项活动来创建 Open X-Embodiment。与内部技术相比,DeepMind 报告称,在使用数据训练其 RT-1-X 模型时,成功率为 50%,然后它将其用于训练其他实验室的机器人。毫无疑问,人工智能(尤其是生成型)和模拟在其中发挥了重要作用
- 2023 年 10 月,麻省理工学院的研究人员采用了一种扩散模型(一种生成式人工智能),以更有效地处理包装问题,包括行李堆叠、汽车保险杠与机械臂之间的碰撞以及将较重的物体放置在较轻的产品之上。他们的方法中使用了一组机器学习模型,每个模型都经过训练以表示某种约束。通过结合这些模型,可以为包装问题产生同时考虑所有约束的全局解决方案
生成式人工智能机器人的热门趋势
图 3: 生成式人工智能机器人的最新趋势
- 自主机器人: 能够在没有人类持续监督的情况下执行任务的机器人被称为自主机器人。这些机器人使用传感器和算法自行导航和做出决策。它们在制造业和物流业等各种行业中变得越来越重要,因为它们可以提高效率和安全性。自主机器人能够处理危险或重复的活动,以便人们可以专注于更复杂的职责。自动驾驶汽车和无人机只是人工智能机器人技术发展的两个例子。其他进步包括机器学习训练模型、内容创建、图像生成、药物发现、音乐生成工具、代码生成、多模态人工智能应用程序、生成广告网络等
- 数字孪生: 机器人和生成式人工智能领域的一个非常有价值的趋势是数字孪生技术。真实物体或系统的虚拟复制品或模拟称为数字孪生。这指的是在机器人领域开发数字对应物的过程,该对应物模仿真实机器人的特征、交互和行为。开发复杂的数字孪生需要使用生成式人工智能,它可以动态模拟真实场景并适应不断变化的环境。这项技术使工程师和开发人员能够在机器人系统实施之前对其进行数字优化和故障排除,从而提高设计流程的效率、降低开发成本并提高机器人设备的整体性能。生成式人工智能和数字孪生的结合正在通过提高各种应用的准确性、适应性和可靠性来彻底改变机器人行业
- NLP 方面的发展: NLP 的进步涉及增强机器对人类语言的理解和响应。该技术通过实现人机之间的无缝通信,影响了许多应用程序,例如聊天机器人、虚拟助手和语言翻译工具。此外,增强的自然语言处理 (NLP) 使机器能够理解语言中的上下文、情感和细微差别,从而促进人机合作。此外,这一趋势不仅改善了用户体验,而且还推动了可以解释和生成类似人类的文本的复杂 AI 系统的创建,使我们更接近自然的人机通信。此外,自然语言处理 (NLP) 的进步正在提高计算机理解和与人类语言或智能交互的能力,通过创建逼真的图像,产生更直观、更用户友好的 AI 系统。
- 合成语音: 生成式人工智能机器人的一个流行趋势是语音合成,旨在为机器人提供逼真自然的声音。这样的技术使机器能够有效地与人互动,改善用户体验并实现人机交互。先进的自然语言处理和深度学习技术使机器人能够理解口语并做出富有表现力和语调丰富的反应。因此,互动变得更加有趣和可理解。这一趋势具有广泛的应用范围,从个性化机器人到老年伴侣,清晰而富有表现力的沟通对于建立融洽关系和信任至关重要。
- 三维(3D)生成: 人工智能在机器人 3D 生成领域取得了重大进展。这需要使用人工智能来创建三维虚拟模型或环境。这些模型可以应用于许多任务,包括设计复杂结构、改善虚拟现实体验以及为机器人系统训练建模真实场景。计算机辅助设计、仿真和虚拟原型等先进领域受益于生成算法的发展,这些算法有助于创建逼真而复杂的 3D 材料。该技术有助于更好地理解和可视化复杂的空间数据,从而有助于在更真实、更身临其境的数字空间中开发和测试机器人系统。
由于对仓库自动化和快速最后一英里交付的需求不断增长,全球自主机器人市场出现了大幅增长。根据 Data Bridge Market Research 的分析,全球自主机器人市场预计在 2022 年至 2030 年期间的复合年增长率 (CAGR) 为 19.70%。
要了解有关该研究的更多信息,请访问:https://www.databridgemarketresearch.com/zh/reports/global-autonomous-robot-market
生成式人工智能机器人的未来前景
机器人生成式人工智能的前景十分光明。该领域的发展和突破为一系列行业的革命性应用打开了大门。
- 对不同部门的可能影响 预计机器人中的生成式人工智能将对众多行业产生重大影响。例如,医疗保健领域的生成式人工智能可以通过创建人工图像来帮助进行医学成像,从而帮助进行诊断和治疗规划。通过创造新颖、富有创意的解决方案,生成式人工智能可以优化制造业的运营和设计。生成式人工智能可用于娱乐领域,以提供互动、个性化的体验。
- 技术创新和进步: 由于技术的不断研究和发展,机器人生成人工智能的主题一直在变化。为了提高生成 AI 模型的能力,研究人员正在研究新方法和新方法。其中包括生成深度学习、生成对抗网络 (GAN) 和生成建模方面的发展。
这些发展可能带来更复杂、更现实的生成式人工智能模型。机器人将能够完成更复杂、更富有想象力的工作,从而提高其效率和多功能性。此外,生成算法将帮助机器人系统更善于做出决策和解决问题。
- 不同公司和政府机构之间的合作机会: 随着机器人生成式人工智能的发展,团队合作对于培养创造力和充分发挥这项技术的潜力至关重要。组织可以通过与该领域的研究人员和主题专家合作,承担具有挑战性的任务并突破生成式人工智能的界限。合作也可以采取跨行业联盟的形式,来自许多领域的代表共同研究生成式人工智能在机器人领域的潜在应用。这种跨学科方法结合了多个领域的知识,可以激发创新和新想法。
近年来,全球医疗保健市场中的生成式人工智能经历了显著增长,这得益于多种因素,例如不同公司之间的合作增加、技术进步不断加快、对医学成像增强的关注度不断提高等等。根据 Data Bridge Market Research 的分析,预计 2023 年至 2031 年期间,全球医疗保健市场中的生成式人工智能的复合年增长率 (CAGR) 将达到 32.60%。
要了解有关该研究的更多信息,请访问:https://www.databridgemarketresearch.com/zh/reports/global-generative-ai-in-healthcare-market
以下是与机器人生成式人工智能即将到来的机遇相关的一些实例:
- 2024 年 3 月,Nvidia 公司开发了一个具有生成 AI 功能的硬件和软件平台,用于创建与人类相似的机器人。新平台将包括一个为机器人和人工智能 (AI) 提供动力的计算机系统,以及一套软件工具(如 genAI),以创建与人类相似的机器人。由于结合了 genAI,人形机器人将能够使用语言、视频、“人类演示”和先前经验的组合来对输入采取行动
- 2024 年 3 月,亚马逊网络服务 (AWS) 和 Nvidia Corporation 宣布 AWS 将很快提供新的 NVIDIA Blackwell GPU 平台,该平台是 NVIDIA 在 GTC 2024 上发布的。为了帮助客户解锁新的生成人工智能 (AI) 功能,AWS 现在将提供 NVIDIA GB200 Grace Blackwell 超级芯片和 B100 Tensor Core GPU,扩大双方长期的战略合作。两家公司将共同提供最先进、最安全的基础设施、软件和服务
- 2024 年 1 月,Nvidia Corporation 及其合作伙伴 Boston Dynamics、Sanctuary AI、Covariant、Unitree Robotics、Collaborative Robotics 等在拉斯维加斯举行的 CES 2024 上展示了其最新的合作伙伴关系和发明,将生成式 AI 和机器人技术融为一体。其众多汽车合作伙伴展示了多项尖端技术,展示了 AI 在车辆工程、性能和设计方面的革命性潜力。汽车行业正在迅速采用生成式 AI 和软件定义计算,这正在推动突破,预计将在来年彻底改变驾驶方式
结论
到 2024 年,基因工程人工智能机器人领域将取得重大进展,并将以比过去更快的速度革新各行各业。机器人技术与人工智能相结合开辟了广泛的机会,彻底改变了日常生活和工业。当我们回顾生成式人工智能机器人的发展历程时,有证据表明,人工智能与机器人技术的合作正在创造一个智能机器与人类共存的世界,提供创造性的解决方案并增强日常体验。