概述
目前,在存储或传输数据时对数据进行加密是常见的做法,但对使用中的数据(特别是内存中的数据)的加密常常被忽视。此外,传统的计算基础设施缺乏强大的机制来保护数据和代码在其活跃使用过程中的安全。这给处理个人身份信息 (PII)、财务数据或健康记录等敏感信息的组织带来了挑战,因为他们必须解决可能损害应用程序和系统内存中数据的机密性和完整性的潜在威胁。机密计算通过在基于硬件的、经过验证的可信执行环境中执行计算来保护正在使用的数据。通过建立安全和隔离的环境,组织可以有效增强涉及敏感和受监管数据的操作的安全性。这些受控环境可确保在应用程序和数据有效使用期间防止未经授权的访问或更改。因此,这些组织的整体安全状况显着提高。
介绍
计算包含数据的三种不同状态:传输期间、静止状态和使用中。当数据在网络中主动移动时,它被视为“传输中”。已存储且未主动访问的数据称为“静态”。最后,正在处理或使用的数据被归类为“正在使用”。在当今时代,敏感数据的存储、使用和共享已变得司空见惯,保护这些数据的所有状态变得越来越重要。这涉及广泛的敏感信息,包括信用卡数据、医疗记录、防火墙配置,甚至地理位置数据。现在普遍部署加密技术来提供数据机密性(阻止未经授权的查看)和数据完整性(防止或检测未经授权的更改)。虽然现在普遍部署保护传输中和静态数据的技术,但第三种状态——保护使用中的数据——是新领域。
“使用中”未受保护数据的安全风险
随着针对网络和存储设备的威胁载体越来越多地受到针对传输中和静止数据的保护,攻击者已将攻击目标转向使用中的数据。业界见证了几起备受瞩目的内存抓取事件,例如 Target 漏洞和 CPU 侧信道攻击,这些事件大大提高了人们对第三种状态的关注,以及几起涉及恶意软件注入的备受瞩目的攻击,例如 Triton 攻击和乌克兰电网攻击。
高级恶意软件防护是一种智能驱动的、集成的企业级高度发达的恶意软件分析和防护解决方案。它还为安全团队提供了深度可见性和控制级别,这是快速检测攻击、合作和控制恶意软件造成损害所必需的。根据 Data Bridge Market Research 的分析,到 2028 年,高级恶意软件防护市场规模价值 89.0117 亿美元,预计在 2021 年至 2028 年的预测期内,复合年增长率将达到 14.30%。Data Bridge Market Research 关于高级恶意软件防护的报告提供了有关预计在预测期内普遍存在的各种因素的分析和见解,同时提供了它们对市场增长的影响。
https://www.databridgemarketresearch.com/zh/reports/global-advanced-malware-protection-market
随着移动、边缘和物联网设备上存储和处理的数据量持续增长,确保数据和应用程序在执行过程中的安全性变得更加重要。这些设备通常在偏远且具有挑战性的环境中运行,因此很难维护其安全性。此外,考虑到移动设备上存储的信息的个人性质,制造商和移动操作系统提供商必须证明个人数据受到保护,并且在共享和处理过程中设备供应商和第三方无法访问个人数据。这些保护措施必须符合监管要求。即使在您可以控制基础设施的情况下,在使用时保护最敏感的数据也是强大的纵深防御策略的重要组成部分。
机密计算利用基于硬件的可信执行环境 (TEE) 在数据主动使用期间保护数据。通过采用机密计算,我们可以有效地减轻前面讨论的许多威胁。可信执行环境 (TEE) 是一种在数据完整性、数据机密性和代码完整性方面确保高水平保证的环境。利用硬件支持的技术,TEE 为执行代码和保护环境中的数据提供增强的安全保证。
在机密计算的背景下,未经授权的实体包括主机上的其他应用程序、主机操作系统、虚拟机管理程序、系统管理员、服务提供商和基础设施所有者,以及可以物理访问硬件的任何人。数据机密性可确保这些未经授权的实体无法访问在可信执行环境 (TEE) 中使用的数据。数据完整性可防止 TEE 之外的实体在处理过程中对数据进行未经授权的更改。代码完整性保证未经授权的实体无法替换或修改 TEE 中的代码。总的来说,这些属性不仅保证了数据的机密性,而且还保证了计算的正确性,从而增强了对计算结果的信任。在不使用基于硬件的 TEE 的方法中通常缺乏这种级别的保证。
下表将典型的 TEE 实现与保护使用中数据的其他两类新兴解决方案(同态加密 (HE) 和可信平台模块 (TPM))的典型实现进行了比较
表 1 - 机密计算与 HE 和 TPM 的安全属性比较
|
硬质三通管
|
同态加密
|
全员生产管理
|
数据的完整性
|
和
|
Y(遵守代码完整性)
|
仅钥匙
|
数据保密性
|
和
|
和
|
仅限钥匙
|
代码完整性
|
和
|
不
|
和
|
代码保密性
|
Y(可能需要工作)
|
不
|
和
|
认证启动
|
各不相同
|
不
|
不
|
可编程性
|
和
|
部分(“电路”)
|
不
|
可证明性
|
和
|
不
|
和
|
可恢复性
|
和
|
不
|
和
|
可信执行环境 (TEE)
根据 CCC(遵循常见行业惯例),可信执行环境 (TEE) 具有以下三个基本属性:
图 - 可信执行环境(TEE)特征
未经授权的实体包括各种参与者,例如主机上的其他应用程序、主机操作系统和管理程序、系统管理员、服务提供商、基础设施所有者或物理访问硬件的任何其他人。这些属性共同确保了数据机密性和 TEE 中执行的计算的准确性,从而增强了对计算结果的信任。
此外,根据具体的 TEE 实现,它可能提供更多功能,包括:
基于硬件的 TEE 利用硬件支持的技术为 TEE 内的代码执行和数据保护提供更高的安全保障。不依赖基于硬件的 TEE 的方法通常缺乏这种级别的保障。
机密计算的好处
机密计算为关注数据隐私和安全的组织提供了许多优势。
图 - 机密计算的好处
实施机密计算
实施机密计算需要仔细规划和考虑。
下表显示了经典计算、使用典型的基于硬件的 TEE 的计算和同态加密之间各种指标的可扩展性的比较。与安全性比较一样,实际答案可能会因供应商、型号或算法而异。
表 2 - 机密计算与 HE 和 TPM 的可扩展性属性比较
特性
|
本国的
|
硬质三通管
|
同态加密
|
数据大小限制
|
高的
|
中等的
|
低的
|
计算速度
|
高的
|
高-中
|
低的
|
跨机器横向扩展
|
是的
|
更多的工作
|
是的
|
跨集合组合数据的能力 (MPC)
|
是的
|
是的
|
非常有限
|
实施中的挑战
虽然机密计算带来了显着的好处,但组织在实施它时必须解决一些挑战。
关键策略
英特尔宣布新的机密计算计划。英特尔于 2023 年 1 月 25 日宣布了多项新的保密计算举措。这些举措包括:
谷歌宣布推出机密云平台。 Google 于 2023 年 2 月 1 日宣布全面推出其机密云平台。机密云平台是一套服务,可帮助组织保护云中的敏感数据。这些服务包括:
Microsoft 宣布推出 Azure 机密计算。 Microsoft 宣布将于 2023 年 2 月 3 日将机密计算引入 Azure。Azure 机密计算是一组帮助组织保护云中敏感数据的服务。这些服务包括:
这些是最近宣布的与机密计算相关的关键战略举措的一些示例。这些举措旨在帮助组织采用机密计算技术并保护云中的敏感数据。
现实世界的用例
机密计算在各个行业都有实际应用,使组织能够保护敏感数据并确保隐私。
图 - 现实世界用例
密钥、秘密、凭证和令牌存储和处理:
对于负责保护敏感数据的组织来说,加密密钥、秘密、凭证和令牌是“王国的钥匙”。传统上,使用本地硬件安全模块 (HSM) 来遵守安全标准并确保这些资产的安全。然而,传统 HSM 的专有性质限制了其可扩展性以及与云和边缘计算环境的兼容性,导致成本增加和部署挑战。机密计算通过利用本地、公共/混合云甚至物联网用例的网络边缘可用的标准化计算基础设施来解决这些限制。独立软件供应商 (ISV) 和大型组织已经采用机密计算来安全地存储和处理加密和秘密信息。密钥管理应用程序利用基于硬件的可信执行环境 (TEE) 来存储和处理这些资产,确保数据机密性、完整性和代码完整性。通过机密计算实现的安全性可与传统 HSM 相媲美,为存储和处理敏感信息提供更具可扩展性和成本效益的解决方案。
公共云用例:
在传统的公共云环境中,信任被置于云提供商基础设施的多个层级中。机密计算通过减少需要最终用户信任的层级数量来引入额外的保护保障。借助基于硬件的可信执行环境 (TEE) 来保护正在使用的应用程序和数据,未经授权的参与者,即使拥有物理或特权访问权限,在访问受保护的应用程序代码和数据时也会面临重大挑战。机密计算旨在将云提供商从可信计算基中移除,从而使之前受安全问题或合规性要求限制的工作负载能够安全地迁移到公共云。
多方计算
随着新的计算模式出现,多方之间可以共享数据和处理能力,确保敏感或受监管数据的机密性和完整性变得至关重要。机密计算为组织提供了一种解决方案,使他们能够安全地共享和分析数据,而不会损害其隐私,即使在不受信任的平台上也是如此。私有多方分析可应用于金融服务、医疗保健和政府等各个领域,以合并和分析私有数据,而不会暴露底层数据或机器学习模型。借助机密计算,数据可以免受篡改和泄露,甚至免受内部威胁,从而确保安全协作并释放全球数据共享的潜力,同时降低安全、隐私和监管风险。
区块链
区块链提供了一个不可变的分类账,用于记录和验证交易,而不需要中心化的机构。虽然它们提供透明度和数据一致性,但在不可变的区块链上存储敏感数据会带来隐私问题。机密计算可以通过利用基于硬件的可信执行环境(TEE)来增强区块链实施。 TEE 使用户能够安全地执行智能合约,确保数据隐私、可扩展性和验证优化。基于TEE的证明服务为交易提供可靠性证明,无需每个参与者独立验证历史数据。此外,机密计算解决了与区块链系统中共识协议相关的计算和通信效率低下的问题。
移动和个人计算设备
客户端设备上的机密计算提供了可保证数据隐私和完整性的用例。应用程序开发人员和设备制造商可以确保个人数据在共享或处理过程中不可见,从而免除制造商的责任。可信执行环境 (TEE) 可对功能正确性进行形式验证,使开发人员能够证明用户数据未离开设备。例如,连续身份验证实现可以在 TEE 中运行来识别用户,而无需暴露敏感的生物识别或行为数据。同样,去中心化的设备端模型训练可以在不泄露训练数据的情况下改进模型并共享改进,通过基于硬件的 TEE 中的相互证明来提供用户控制的策略和约束。
边缘和物联网用例:
机密计算在数据隐私和安全至关重要的边缘和物联网环境中找到了有价值的用例。例如,在家庭路由器内进行 DDoS 检测的本地搜索和过滤等场景中,机密计算环境可以保护从 TCP/IP 数据包元数据推断出的敏感用户行为。其他示例包括边缘机密机器学习处理,例如用于减少延迟的视频元数据生成、具有感兴趣人员模板的闭路电视摄像机监控以及设备上培训模型。机密计算技术还有助于减轻在不受信任方可能具有物理访问权限的环境中利用对设备的物理访问的攻击。
记录的数据集合,即使用密码学链接在一起的技术数据库,称为区块链。全球范围内不断扩大的跨境贸易业务预计将增加对该技术的需求。 Data Bridge Market Research 分析称,2022 年区块链市场价值为 100.2 亿美元,到 2030 年将达到 7661 亿美元,在 2023 年至 2030 年的预测期内复合年增长率为 71.96%。法律对加密货币的接受激励企业和投资者增加区块链技术投资。此外,预计区块链技术很快将在公司的努力中变得更加有效和高效。 DeFi 是一种基于区块链的新型金融技术,可以减少银行对金融服务和资金的控制。在整个预测期内,预计市场将通过增加去中心化金融领域的战略举措来增长。
未来趋势和方向
机密计算领域正在迅速发展,并且可以确定一些未来的趋势和方向。
结论
机密计算提供了一种在不受信任的环境中处理敏感数据时保护敏感数据的突破性方法。通过结合数据隔离、安全区域、证明、加密和最小化信任假设等原则,组织可以确保其数据的机密性和完整性。尽管存在与性能、密钥管理、遗留系统和应用程序可移植性相关的挑战,但实施机密计算的好处是巨大的。现实世界的用例证明了其在医疗保健、金融、边缘计算和云计算中的价值。通过遵循最佳实践并考虑未来趋势,组织可以采用机密计算来保护其敏感数据并在日益互联的世界中保护隐私。
DBMR 已为全球 40% 以上的财富 500 强企业提供服务,拥有超过 5000 个客户网络。我们的团队很乐意为您解答疑问。请访问, https://www.databridgemarketresearch.com/zh/contact
联系我们