Global Predictive Maintenance Market
市场规模(十亿美元)
CAGR : %
Forecast Period |
2024 –2031 |
Market Size (Base Year) |
USD 6.72 Billion |
Market Size (Forecast Year) |
USD 63.09 Billion |
CAGR |
|
Major Markets Players |
|
>全球预测性维护市场细分,按组件(解决方案和服务)、部署模式(云和本地)、组织规模(大型企业和中小型企业)、垂直行业(制造业、能源和公用事业、交通运输、政府、医疗保健、航空航天和国防等)、利益相关者(MRO、OEM/ODM 和技术集成商)划分 - 行业趋势和预测到 2031 年
预测性维护市场分析
预测性维护已成为工业运营中的一种变革性方法,利用数据分析、物联网和人工智能的进步来提高设备可靠性并减少停机时间。与遵循既定时间表的传统预防性维护不同,预测性维护依靠实时数据来评估设备健康状况并预测潜在故障。这种转变使公司能够仅在必要时采取行动,从而优化资源并延长资产寿命。物联网传感器和机器学习算法的进步对于预测性维护的成功至关重要,可以持续监控设备并尽早发现性能异常。传感器收集有关温度、振动和压力等参数的实时数据,然后使用机器学习进行分析以识别指示磨损或故障的模式。云计算进一步增强了这一过程,使数据能够大规模聚合、处理和分析,为大量资产提供有价值的见解。从制造业、能源到运输业,各行各业都采用了预测性维护,降低了维护成本并提高了运营效率。随着技术的不断发展,预测性维护有望变得更加准确、可扩展和易于访问,为各个行业更智能、数据驱动的资产管理铺平道路。
预测性维护市场规模
2023 年全球预测性维护市场规模价值 67.2 亿美元,预计到 2031 年将达到 630.9 亿美元,2024 年至 2031 年预测期内的复合年增长率为 32.30%。除了市场价值、增长率、细分市场、地理覆盖范围、市场参与者和市场情景等市场洞察外,Data Bridge 市场研究团队策划的市场报告还包括深入的专家分析、进出口分析、定价分析、生产消费分析和 pestle 分析。
预测性维护市场趋势
“基于云的预测性维护解决方案的兴起”
预测性维护市场正在经历快速增长,这得益于物联网、人工智能和大数据分析的整合,以提高资产性能并减少停机时间。塑造这一市场的一个关键趋势是基于云的预测性维护解决方案的兴起。这些解决方案使公司能够实时收集和分析大量设备数据(通常是从远程位置),从而使组织更容易在故障发生之前预测故障。例如,通用电气已将基于云的预测性维护集成到其工业设备中,使客户能够持续监控机械健康状况并做出数据驱动的维护决策。这种方法提高了运营效率并降低了维护成本。随着各行各业继续采用基于云的平台,预测性维护市场预计将扩大,各公司寻求可扩展、灵活的解决方案来提高生产力并延长资产寿命。
报告范围和预测性维护市场细分
属性 |
预测性维护关键市场洞察 |
涵盖的领域 |
|
覆盖国家 |
北美洲的美国、加拿大和墨西哥、德国、法国、英国、荷兰、瑞士、比利时、俄罗斯、意大利、西班牙、土耳其、欧洲其他地区、中国、日本、印度、韩国、新加坡、马来西亚、澳大利亚、泰国、印度尼西亚、菲律宾、亚太地区 (APAC) 的其他地区、沙特阿拉伯、阿联酋、南非、埃及、以色列、中东和非洲 (MEA) 的其他地区、巴西、阿根廷和南美洲其他地区 |
主要市场参与者 |
微软(美国)、IBM(美国)、SAP(德国)、SAS Institute Inc.(美国)、Software GmbH(德国)、Cloud Software Group, Inc.(美国)、Hewlett Packard Enterprise Development LP(美国)、Altair Engineering Inc.(美国)、Splunk LLC(美国)、甲骨文(美国)、谷歌(美国)、Amazon Web Services, Inc.(美国)、通用电气公司(美国)、施耐德电气(法国)、日立有限公司(日本)、PTC(美国)和 DINGO Software Pty. Ltd(澳大利亚) |
市场机会 |
|
增值数据信息集 |
除了市场价值、增长率、细分市场、地理覆盖范围、市场参与者和市场情景等市场洞察之外,Data Bridge 市场研究团队策划的市场报告还包括深入的专家分析、进出口分析、定价分析、生产消费分析和 pestle 分析。 |
预测性维护市场定义
预测性维护软件系统用于监控设备或机械在运行过程中的性能和状况。该软件利用先进的技术在发生任何故障之前安排维护,确保设备的可靠性。预测性维护软件可应用于各个领域,包括检测谐波失真引起的三相功率不平衡、识别电机电容峰值以及查明因轴承故障导致的过热问题。
预测性维护市场动态
驱动程序
- 越来越多地采用新兴技术来获取有价值的见解
大数据、机器对机器 (M2M) 通信和人工智能 (AI)的不断进步,使人们能够从物联网设备生成的海量数据中获得更深入的洞察,从而推动预测性维护市场的大幅增长。这些设备从传感器、摄像头和其他连接源收集大量数据,必须将这些数据转化为可操作的信息才能具有真正的价值。大数据处理和数据可视化技术使用户能够通过批处理和离线分析获得洞察,而实时数据解释越来越依赖于自动化来实现可扩展性。人工智能通过分析整个物联网生态系统生成的海量数据发挥着关键作用,将其转化为组织可以用于及时决策的宝贵洞察。通过将人工智能集成到他们的分析模型中,企业可以自动化数据解释并从物联网数据流中获得实时、可操作的洞察,为跨行业的预测性维护解决方案创造强大的驱动力。
- 全球行业数量不断增长,推动需求和供应增加
全球范围内的行业数量不断增加,推动了需求和供应的增加,尤其是在工业化进程迅速加快的新兴国家。随着印度、中国和巴西等国家继续扩大其制造业和技术部门,对预测性维护等先进解决方案的需求也日益增长。例如,在印度,汽车和制造业正在采用预测性维护技术来提高运营效率并减少停机时间,从而推动了对此类解决方案的需求。新兴国家工业活动的激增是重要的市场驱动力,因为企业寻求可扩展、经济高效的工具来管理不断增长的基础设施并确保可靠的运营。这些地区扩大的工业基础导致对预测性维护软件和服务的需求增加,为供应商满足这一不断增长的需求创造了巨大的机会。
机会
- 物联网 (IoT) 集成度不断提高
物联网 (IoT) 融入预测性维护解决方案,通过实现对设备和机械的持续实时监控,大大扩展了市场机会。物联网设备(例如智能传感器和智能电表)收集大量有关温度、振动、压力和湿度等参数的数据。然后通过高级算法和机器学习模型分析这些数据,以预测潜在的设备故障。例如,在制造业中,支持物联网的预测性维护系统可以检测到机器中的异常振动,在故障中断生产之前提醒维护团队进行维修。物联网在汽车、能源和制造业等行业中的日益普及为基于物联网的预测性维护解决方案创造了一个蓬勃发展的市场。物联网能够减少计划外停机时间、延长设备使用寿命并最大限度地降低维修成本,这进一步扩大了这种需求,使物联网成为预测性维护市场的主要驱动力。随着越来越多的企业采用物联网设备和联网系统,对强大、可扩展的预测性维护解决方案的需求将继续上升,这为该领域的技术提供商带来了丰厚的增长机会。
- 更加重视降低成本
预测性维护通过最大限度地减少意外设备故障、优化备件库存和降低人工成本,为企业提供了极具吸引力的成本削减机会。通过使用数据驱动的洞察力来预测和预防设备故障,企业可以避免代价高昂的停机时间和通常与意外故障相关的昂贵维修。例如,在运输领域,预测性维护系统可以预测车辆发动机零件何时会磨损,从而使公司能够在方便的时间安排维修并防止代价高昂的破坏性故障。同样,在制造业中,预测性维护有助于优化备件库存,确保仅在需要时订购零件,避免库存过剩或库存不足。此外,它减少了对紧急维修团队和加班劳动力的需求,因为可以在非高峰时段安排维护,从而节省运营成本。这种成本节约潜力是一个重要的市场机会,因为各行各业的公司都在越来越多地寻求在保持高效率和性能的同时降低运营费用的方法。凭借这些财务优势,对预测性维护解决方案的需求持续上升,为市场解决方案提供商提供了强大的增长机会。
限制/挑战
- 缺乏熟练劳动力
基于人工智能的物联网技术和先进软件系统的实施需要经过培训的熟练工人来操作和管理这些新系统和升级的系统。然而,各行各业都面临着具备必要专业知识的训练有素的专业人员短缺的问题。随着全球制造商采用预测性维护系统,对熟练劳动力的需求正在增长。公司需要在网络安全、网络和运营等领域发展专业知识,以有效利用物联网数据预测问题、预防故障、优化运营和加强产品开发。此外,人工智能和机器学习 (ML) 与物联网系统的集成有望在降低运营成本方面发挥关键作用。随着人工智能融入物联网,对数据分析师团队的需求将日益增加,这些团队专门处理和解读物联网设备生成的大量数据,以提供可操作的见解。
- 需要定期维护和系统升级
高成本和投资要求对预测性维护市场构成了巨大挑战,因为企业在实施先进的预测性维护解决方案时经常面临巨大的财务障碍。生物识别系统和人工智能等复杂技术的集成需要在软件和硬件方面进行大量的初始投资。例如,在整个组织内部署一套全面的预测性维护系统可能要花费数十万美元,这对于小型企业或预算紧张的企业来说可能是难以承受的。此外,这些系统的持续维护和更新会增加财务负担,使企业难以有效地分配资源。因此,预测性维护技术的高成本代表着一项重大的市场挑战,供应商必须克服这一挑战,才能促进其在各个领域的更广泛应用。
本市场报告详细介绍了最新发展、贸易法规、进出口分析、生产分析、价值链优化、市场份额、国内和本地市场参与者的影响,分析了新兴收入领域的机会、市场法规的变化、战略市场增长分析、市场规模、类别市场增长、应用领域和主导地位、产品批准、产品发布、地域扩展、市场技术创新。如需获取更多市场信息,请联系 Data Bridge Market Research 获取分析师简报,我们的团队将帮助您做出明智的市场决策,实现市场增长。
预测性维护市场范围
市场根据组件、部署模式、组织规模、垂直行业和利益相关者进行细分。这些细分市场之间的增长将帮助您分析行业中增长微弱的细分市场,并为用户提供有价值的市场概览和市场洞察,帮助他们做出战略决策,确定核心市场应用。
成分
- 解决方案
- 融合的
- 独立
- 服务
- 托管服务
- 专业服务
- 系统集成
- 支持和维护
- 咨询
系统集成
- 支持和维护
- 咨询
部署模式
- 本地
- 云
- 公有云
- 私有云
- 混合云
组织规模
- 大型企业
- 中小企业
垂直的
- 政府和国防
- 制造业
- 能源和公用事业
- 运输和物流
- 医疗保健和生命科学
利益相关者
- 维护、维修及运行 (MRO)
- 代工/ODM
- 技术集成商
预测性维护市场区域分析
对市场进行分析,并按上述组件、部署模式、组织规模、垂直和利益相关者提供市场规模洞察和趋势。
市场报告涉及的国家包括北美洲的美国、加拿大、墨西哥、德国、瑞典、波兰、丹麦、意大利、英国、法国、西班牙、荷兰、比利时、瑞士、土耳其、俄罗斯、欧洲的其他地区、欧洲的日本、中国、印度、韩国、新西兰、越南、澳大利亚、新加坡、马来西亚、泰国、印度尼西亚、菲律宾、亚太地区 (APAC) 的其他地区、巴西、阿根廷、南美洲的其他地区(南美洲的一部分)、阿联酋、沙特阿拉伯、阿曼、卡塔尔、科威特、南非、中东和非洲 (MEA) 的其他地区(中东和非洲 (MEA) 的一部分)。
北美预计将在预测性维护市场中占据主导地位,这得益于该地区重大的技术进步。提供预测性维护解决方案的参与者数量不断增加,预计也将促进市场的增长。随着越来越多的企业采用这些解决方案,对预测性维护技术的需求将会增加,从而进一步推动市场的发展。此外,该地区领先公司的存在和持续的创新将支持市场持续扩张。
亚太地区预计将在采用预测性维护方面实现稳步增长,这主要得益于该地区新兴经济体的发展。技术进步以及企业通过高效维护策略优化资产绩效的需求日益增加是推动这一增长的关键因素。随着各行各业努力提高生产力并减少停机时间,预测性维护技术变得至关重要。此外,该地区对采用尖端创新的关注将进一步加速预测性维护解决方案的整合。
报告的国家部分还提供了影响市场当前和未来趋势的各个市场影响因素和市场监管变化。下游和上游价值链分析、技术趋势和波特五力分析、案例研究等数据点是用于预测各个国家市场情景的一些指标。此外,在提供国家数据的预测分析时,还考虑了全球品牌的存在和可用性以及它们因来自本地和国内品牌的大量或稀缺竞争而面临的挑战、国内关税和贸易路线的影响。
预测性维护市场份额
市场竞争格局按竞争对手提供详细信息。详细信息包括公司概况、公司财务状况、产生的收入、市场潜力、研发投资、新市场计划、全球影响力、生产基地和设施、生产能力、公司优势和劣势、产品发布、产品宽度和广度、应用主导地位。以上提供的数据点仅与公司对市场的关注有关。
预测性维护市场的领导者有:
- 微软 (美国)
- IBM(美国)
- SAP(德国)
- SAS Institute Inc.(美国)
- 软件有限公司(德国)
- Cloud Software Group, Inc.(美国)
- 惠普企业发展有限公司 (美国)
- Altair Engineering Inc.(美国)
- Splunk LLC(美国)
- 甲骨文 (美国)
- 谷歌(美国)
- 亚马逊网络服务公司(美国)
- 通用电气公司(美国)
- 施耐德电气(法国)
- 日立有限公司(日本)
- PTC(美国)
- DINGO Software Pty. Ltd(澳大利亚)
预测性维护市场的最新发展
- 2023 年 8 月,美国公司霍尼韦尔推出了 Versatilis 变送器,这是一款专为各行各业旋转设备状态监测而设计的解决方案
- 2023 年 6 月,埃森哲收购了亚马逊网络服务 (AWS) 的顶级合作伙伴 Nextira,以增强其在 Accenture Cloud First 中的工程能力。此次收购将使埃森哲能够为客户提供预测分析、云原生创新和沉浸式体验,利用 AWS 解决方案提供全面的云功能
- 2023 年 5 月,思科系统与电信基础设施服务提供商 NTT 合作开发解决方案,以提供实时数据洞察、改进决策并增强安全性。他们的合作重点是预测性维护、供应链管理和资产跟踪
- 2022 年 6 月,总部位于英国的西门子收购了 Senseye,以增强其在预测性维护和资产智能方面的产品组合
- 2022 年 6 月,总部位于美国的微软与总部位于法国的施耐德电气合作,推出了先进的维护解决方案,以增强能源管理、资产性能和运营效率
- 2021 年 7 月,施耐德电气推出了 EcoStruxure TriconexTM Safety View,这是一款用于旁路和警报管理的开创性软件,经过安全和网络安全双重认证。该解决方案允许操作员监控旁路状态和关键警报,以在高风险条件下保持安全运行
- 2021 年 5 月,SAS 研究院发布了强大的云原生数据管理和分析平台 SAS Viya,旨在通过新的数据运营集成解决方案赋能数据驱动的成功
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。