Global Neuromorphic Computing Market
市场规模(十亿美元)
CAGR :
%

![]() |
2025 –2032 |
![]() |
USD 28.30 Billion |
![]() |
USD 297.72 Billion |
![]() |
|
![]() |
全球神經形態運算市場細分,按產品(硬體和軟體)、部署(邊緣運算和雲端運算)、應用(影像辨識、資料處理、訊號辨識、物件偵測和資料探勘)、最終使用者(航空航太和國防、IT 和電信、醫療、汽車、工業等)– 產業趨勢和預測到 2032 年
神經形態計算市場分析
在人工智慧和機器學習的進步以及對節能計算解決方案的不斷增長的需求的推動下,神經形態計算市場正在經歷顯著增長。神經形態運算模仿人類大腦的神經結構和功能,實現更快的處理和決策,同時降低功耗。該技術可應用於航空航太、國防、汽車、醫療和 IT 等各個產業,用於影像辨識、訊號處理和資料探勘等任務。英特爾、IBM 和高通等公司推出創新的神經形態硬體和軟體等最新發展加速了市場成長。此外,旨在增強神經形態能力的合作夥伴關係和協作進一步推動了市場的發展。神經形態運算的採用源自於其徹底改變複雜系統中的邊緣運算和即時處理的潛力。隨著不斷的研究和開發,未來幾年市場將呈指數級增長,從而改變行業處理數據密集型應用的方式。
神經形態計算市場規模
2024 年全球神經形態計算市場規模價值 283 億美元,預計到 2032 年將達到 2977.2 億美元,2025 年至 2032 年預測期內的複合年增長率為 34.20%。佈局、詳細和更新的價格趨勢分析以及供應鏈和需求的缺口分析。
神經形態計算市場趨勢
“關注能源效率”
在人們日益關注環境問題的背景下,神經形態計算因其對複雜計算的節能方法而變得越來越突出。與傳統運算系統在資料處理和人工智慧操作等任務中消耗大量電力不同,神經形態系統模仿人類大腦的神經結構,使其能夠以最少的能耗執行複雜的任務。這項特性使得該技術在優先考慮永續性的產業應用(如醫療保健、汽車和智慧城市)中極具吸引力。透過降低能耗同時維持高處理能力,神經形態運算符合全球永續發展目標並滿足對更環保技術的需求。隨著各組織尋求創新解決方案來降低碳足跡,神經形態運算正在成為永續發展的關鍵推動因素。
報告範圍和神經形態計算市場細分
屬性 |
神經形態計算關鍵市場洞察 |
涵蓋的領域 |
|
覆蓋國家 |
北美洲的美國、加拿大和墨西哥、德國、法國、英國、荷蘭、瑞士、比利時、俄羅斯、義大利、西班牙、土耳其、歐洲其他地區、歐洲的中國、日本、印度、韓國、新加坡、馬來西亞、澳洲、泰國、印尼、菲律賓、亞太地區 (APAC) 的其他地區、沙烏地阿拉伯、阿聯酋、南非、埃及、以色列、中東和非洲 (MEA) 的其他地區 |
主要市場參與者 |
英特爾公司(美國)、IBM(美國)、BrainChip Inc.(澳洲)、高通科技公司(美國)、惠普企業發展有限公司(美國)、三星(韓國)、HRL Laboratories, LLC(美國)、General Vision Inc.(美國)、ABR(新加坡)、Vicarious(美國)、Numenta(美國)、Brainm)、Biuxity(西班牙) Inc.(美國)、NEXTMIND SRL(法國)、Cognixion(加拿大)、NeuroPace, Inc.(美國)、MindMaze(瑞士)、Innatera Nanosystems BV(荷蘭) |
市場機會 |
|
加值資料資訊集 |
除了對市場價值、成長率、細分、地理覆蓋範圍和主要參與者等市場情景的見解之外,Data Bridge Market Research 策劃的市場報告還包括深入的專家分析、按地理位置表示的公司生產和產能、分銷商和合作夥伴的網絡佈局、詳細和更新的價格趨勢分析以及供應鏈和需求的赤字分析。 |
神經形態計算市場定義
神經形態計算是一種模仿人類大腦結構和功能的尖端計算方法。它使用人工神經網路和模擬生物神經元和突觸的硬件,能夠有效地並行處理複雜數據。該技術特別擅長以最小的能耗處理模式識別、決策和學習等任務,非常適合人工智慧、機器人和邊緣運算領域的應用。透過複製大腦即時處理資訊的能力,神經形態運算在實現更智慧、更節能的運算系統方面取得了重大進展。
神經形態計算市場動態
驅動程式
- 邊緣運算的採用率不斷提高
對邊緣即時資料處理的需求不斷增長,大大推動了神經形態運算的採用。與傳統運算系統不同,神經形態架構擅長以更快的速度和更節能的方式處理影像辨識、語音處理和決策等任務。此功能在自動駕駛汽車、物聯網設備和工業自動化等即時數據處理至關重要的應用中尤其有價值。透過實現低延遲響應並降低功耗,神經形態運算滿足了對更快、更可持續的邊緣運算解決方案日益增長的需求。隨著行業優先考慮效率和即時處理,這項技術正在成為市場成長的主要驅動力。
- 汽車和醫療保健產業需求不斷增長
自動駕駛汽車和智慧醫療設備等自主系統的日益普及,大大推動了對神經形態運算的需求。該技術能夠以最小的能耗即時處理複雜數據,非常適合決策和適應性至關重要的自主應用。神經形態系統使車輛能夠對動態環境做出反應,並使醫療設備能夠做出即時、準確的決策,確保安全和效率。隨著產業日益轉向自動化,神經形態運算在增強這些系統的功能和可靠性方面發揮關鍵作用,進一步推動其市場成長。
機會
- 人工智慧和機器學習應用的成長
神經形態系統與人工智慧 (AI) 和機器學習 (ML) 平台的整合帶來了巨大的市場機會。透過利用神經形態運算,人工智慧和機器學習平台可以提高自動駕駛、機器人和預測分析等任務的效率和準確性。神經形態系統能夠快速且以最小的功耗處理數據,從而增強即時決策能力,在動態環境中提供更好的結果。隨著各行各業尋求推動自動化和人工智慧驅動的創新,對神經形態運算技術的需求將持續成長,為市場擴張創造巨大的機會。
- 融入穿戴式科技
將神經形態晶片整合到健身追蹤器、健康監測器和擴增實境 (AR) 穿戴式裝置中,帶來了光明的市場機會。這些設備需要即時數據處理,以實現準確的追蹤、個人化的健康洞察和沈浸式的用戶體驗。神經形態晶片採用受大腦啟發的架構,提供低功耗、高速運算能力,能夠實現持續監測和即時回饋,而不會耗盡電池壽命。這項進步在健康監測方面尤其重要,即時分析可以檢測異常並改善使用者結果。隨著健身愛好者和醫療保健需求推動的穿戴式裝置市場不斷成長,神經形態運算的採用將開啟新的可能性,推動市場擴張。
限制/挑戰
- 缺乏熟練勞動力
神經形態計算技術的專業性要求精通人工智慧、神經科學和硬體設計等領域的高技能工程師。由於技術仍在不斷發展,具備有效開發、實施和優化神經形態系統所需專業知識的專業人員數量有限。對於旨在採用和擴展神經形態計算解決方案的公司來說,熟練人才的短缺構成了重大挑戰。專業知識的差距可能會導致創新延遲和研發成本增加,最終阻礙市場的整體成長和擴張。
- 開發成本高
神經形態晶片和系統的開發涉及複雜和尖端技術,需要大量研發投入。這些高昂的研發成本增加了生產神經形態解決方案的整體費用,使其難以廣泛採用,尤其是在小型公司和新創公司中。對專用材料、先進製造流程和漫長開發週期的需求進一步增加了財務負擔。因此,高昂的成本可能會阻礙神經形態計算技術的大規模應用,限制其可及性,並減緩可能從該技術中受益的各個行業的創新步伐。
本市場報告詳細介紹了近期發展、貿易法規、進出口分析、生產分析、價值鏈優化、市場份額、國內和本地市場參與者的影響,分析了新興收入來源方面的機會、市場法規的變化、戰略市場增長分析、市場規模、類別市場增長、應用領域和主導地位、產品審批、產品發布、地理擴展、市場技術創新。要獲取更多市場信息,請聯繫 Data Bridge Market Research 獲取分析師簡報,我們的團隊將幫助您做出明智的市場決策,實現市場成長。
神經形態計算市場範圍
市場根據產品、部署、應用和最終用戶進行細分。這些細分市場之間的成長將幫助您分析行業中的微薄成長細分市場,並為用戶提供有價值的市場概覽和市場洞察,幫助他們做出策略決策,確定核心市場應用。
奉獻
- 硬體
- 軟體
部署
- 邊緣運算
- 雲端運算
應用
- 影像辨識
- 資料處理
- 訊號識別
- 物體偵測
- 資料探勘
最終用戶
- 航空航太和國防
- 資訊科技和電信
- 醫療的
- 汽車
- 工業的
- 其他的
神經形態計算市場區域分析
對市場進行了分析,並按國家、產品、部署、應用和最終用戶提供了市場規模洞察和趨勢,如上所述。
市場報告涉及的國家包括北美洲的美國、加拿大和墨西哥、歐洲的德國、法國、英國、荷蘭、瑞士、比利時、俄羅斯、義大利、西班牙、土耳其、歐洲其他地區、亞太地區(APAC)的中國、日本、印度、韓國、新加坡、馬來西亞、澳洲、泰國、印尼、菲律賓、亞太地區(APAC)的其他地區、沙烏地阿拉伯、阿拉伯聯合大公國、南非、泰國、印尼、菲律賓、亞太地區(APAC)的其他地區、沙烏地阿拉伯、阿聯酋其他地區的其他國家、
北美在神經形態運算市場佔據主導地位,這主要得益於該地區主要神經形態晶片製造商的存在。該地區先進的技術基礎設施和對創新的高度重視進一步增強了其主導地位。此外,汽車和醫療保健等行業對人工智慧驅動應用的需求不斷增長,有助於該地區保持市場領先地位。
受神經形態運算計畫投資增加的推動,歐洲預計在 2025 年至 2032 年間經歷大幅成長。該地區致力於推進人工智慧和機器學習技術,預計將促進進一步發展。隨著更多資源被分配給這些計劃,歐洲將加強在神經形態運算市場的地位。
報告的國家部分還提供了影響單一市場的因素以及影響市場當前和未來趨勢的國內市場監管變化。下游和上游價值鏈分析、技術趨勢和波特五力分析、案例研究等數據點是用於預測各國市場情景的一些指標。此外,在對國家數據進行預測分析時,還考慮了全球品牌的存在和可用性,以及由於來自本地和國內品牌的大量或稀缺的競爭而面臨的挑戰,國內關稅和貿易路線的影響。
神經形態計算市場佔有率
市場競爭格局提供了競爭對手的詳細資訊。其中包括公司概況、公司財務、收入、市場潛力、研發投資、新市場計劃、全球影響力、生產基地和設施、生產能力、公司優勢和劣勢、產品發布、產品寬度和廣度、應用主導地位。以上提供的數據點僅與公司對市場的關注有關。
在市場上運作的神經形態計算市場領導者是:
- 英特爾公司(美國)
- IBM(美國)
- BrainChip Inc.(澳洲)
- 高通科技公司(美國)
- 惠普企業開發有限公司 (美國)
- 三星(韓國)
- HRL Laboratories, LLC(美國)
- General Vision Inc.(美國)
- ABR(新加坡)
- Vicarious(美國)
- Numenta(美國)
- Aspinity(美國)
- BrainCo, Inc.(美國)
- Bitbrain Technologies(西班牙)
- Linux 核心組織有限公司(美國)
- NEXTMIND SRL(法國)
- Cognixion(加拿大)
- NeuroPace, Inc.(美國)
- MindMaze(瑞士)
- Innatera Nanosystems BV(荷蘭)
神經形態計算市場的最新發展
- 2024年2月,SynSense(中國)收購iniVation AG(瑞士),成為神經形態技術領先供應商。此次合併將 SynSense 在超低功耗處理方面的專業知識與 iniVation 的神經形態視覺感測功能結合,創建了 SynSense 集團。此次整合可望增強消費性電子、機器人、航空航太和汽車等各行業的智慧視覺系統,使該公司成為推動神經形態技術發展的關鍵參與者
- 2024年3月,恩智浦半導體(荷蘭)與NVIDIA公司(美國)合作,透過將NVIDIA的TAO工具包與恩智浦的邊緣設備結合,推動AI的部署。此次合作使 NVIDIA 預先訓練的 AI 模型能夠在 i.MX 93 處理器中的 NXP 神經處理單元 (NPU) 上高效運行,從而促進跨行業 AI 驅動應用程式的更快開發和部署
- 2024年4月,英特爾發表了全球最大的神經形態系統Hala Point,搭載英特爾Loihi 2處理器。該系統旨在推動類腦人工智慧的研究並克服當前人工智慧技術的挑戰。與英特爾早期的系統 Pohoiki Springs 相比,Hala Point 的神經元容量顯著提高了十倍以上,性能提高了約十二倍。它每秒可處理高達 20 千萬億次運算,同時實現每瓦每秒超過 15 兆次 8 位元運算的效率,同時執行標準的深度神經網絡
- 2023年10月,IBM發布了專為神經推理設計的全新晶片架構NorthPole,成果發表在《Science》雜誌。與現有晶片相比,NorthPole 可以更有效率、更低延遲地運行 AI 驅動的影像辨識任務。它的運行速度比其前身 TrueNorth 晶片快 4,000 倍。 NorthPole 晶片由 IBM Research 加州實驗室開發,旨在徹底改變先進 AI 硬體系統的可擴展性
- 2022年12月,三星電子有限公司與搜尋引擎Naver的營運商NAVER株式會社聯手開發針對超大規模人工智慧(AI)模型優化的半導體解決方案。透過結合硬體和軟體專業知識,兩家公司旨在加速處理大量人工智慧工作負載,提高人工智慧系統在高階應用中的效率和可擴展性
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。