Global Natural Language Processing Nlp Healthcare Life Sciences Market
市场规模(十亿美元)
CAGR :
%

![]() |
2024 –2031 |
![]() |
USD 2.11 Billion |
![]() |
USD 8.48 Billion |
![]() |
|
![]() |
|
2023 年全球自然语言处理 NLP 医疗生命科学市场价值为 21.1 亿美元。预计市场规模将以 19% 的复合年增长率增长,到 2031 年达到 84.8 亿美元。
全球自然语言处理 NLP 医疗生命科学市场 – 行业概览
医疗保健和生命科学领域产生大量数据,包括电子健康记录、临床试验报告、研究数据和患者报告。据世界经济论坛称,医疗保健行业产生的数据占全球数据的 30% 以上,其中大部分数据都未被使用。自然语言处理 (NLP) 在医疗保健领域的应用在处理医疗数据方面发挥着巨大作用,从而带来了创新和发明,这些创新和发明可能成为发现治疗和疗法、药物和药物的基础,这些药物和药物可以证明是治疗各种健康状况的有效方法。NLP 以其全面的数据分析导向方法彻底改变了医疗保健和生命科学行业。现在,借助 NLP 对非结构化数据的动态分析、情绪分析、命名实体识别和药物发现,没有任何医疗保健和生命科学记录被闲置,从而提取有价值的见解,帮助大幅提高患者参与度,从而推动全球 NLP 医疗保健生命科学市场不断扩大。
数据桥市场研究市场报告提供了最新发展、贸易法规、市场份额、基于细分和区域分析的市场趋势、市场参与者的影响、新兴收入领域机会分析、市场法规、战略市场增长分析、市场规模、类别市场增长、应用领域和主导地位、产品批准、产品发布、地理扩展和市场技术创新的详细信息。要获取有关市场的更多信息,请联系数据桥市场研究的专家分析师团队。我们的团队将帮助您做出明智的市场决策,以实现业务增长。
全球自然语言处理 NLP 医疗生命科学市场规模
NLP 医疗保健生命科学市场报告指标详情 |
|
预测期 |
2024-2031 |
基准年 |
2023 |
历史年份 |
2022(可定制 2016-2021) |
測量單元 |
十亿美元 |
数据指针 |
市场洞察市场价值、增长率、细分市场、地理覆盖范围、市场参与者和市场情景、深入专家分析、患者流行病学、管道分析、定价分析和监管框架。 |
NLP 与医疗保健和生命科学的融合通过利用数据为医学带来好处,从而推动了医学的发展。医疗保健数据的指数级增长加速了对 NLP 解决方案的需求,这些解决方案可以帮助管理这片非结构化数据海洋,以挖掘有价值的见解。人工智能和机器学习领域的持续创新正在帮助开发 NLP 应用程序的功能和准确性,进一步鼓励采用 NLP 技术来增强医疗保健领域的研究和开发。NLP 与医疗保健的相互联系对医疗服务提供商来说是一个福音,他们可以调整患者护理和医疗保健服务,以实现市场增长。Databridge Market Research 深入全面分析了市场,并发现全球自然语言处理 NLP 医疗保健生命科学市场以 3.64% 的复合年增长率增长。2023 年市场规模价值 21.1 亿美元,预计到 2031 年将增长到 84.8 亿美元。
NLP 医疗保健 生命科学 市场动态
NLP 医疗生命科学市场增长动力
整理电子健康记录 (EHR) 以供进一步分析
医疗机构使用的电子健康记录 (EHR) 会产生大量与患者相关的数据,这些数据很难构造、存储和分析。这些电子记录通常包括医疗报告、患者病史和其他类型的数据。不仅组织和检查这些数据很重要,轻松访问这些数据也同样重要。包括临床文档、语音识别、数据挖掘研究和临床决策支持在内的 NLP 技术在医疗数据提取、检查和确保其按使用情况可用方面非常有效。通过利用 NLP,医疗保健提供者可以更有效地分析和解释这些海量数据,从而增强临床决策能力、个性化患者护理和提高运营效率,从而推动市场增长。
基于人工智能(AI)和机器学习(ML)的预测分析
NLP 是人工智能的一个分支,它配备了统计和分析模型,在识别趋势和模式方面发挥着重要作用。当医疗保健领域的 NLP 接收复杂数据时,它会对其进行结构化,对患者的记录进行全面分析。换句话说,它对患者相关数据进行预测分析,从而得出当前的健康状况和对身体的影响程度,并帮助预见患者易患的疾病。这些技术允许从非常大的数据集中提取有用的见解、识别模式和结果预测,从而做出更明智的临床决策和更好的患者结果。这种预测分析的结论是改善患者护理和采取先进的预防措施,以防止预测的健康状况。通过 NLP 进行预测分析是增强患者护理服务和促进市场增长的主要贡献者。
自动化患者记录和文档可降低医疗成本
由自然语言处理 (NLP) 提供支持的自动化临床文档通过将口头或书面信息转换为结构化的可操作数据,简化了患者记录的管理。这种自动化减轻了医疗专业人员的负担,最大限度地减少了手动输入错误,并确保准确全面地记录患者信息。这种自动化技术是一种经济高效的方式,使医疗专业人员更容易将更多时间花在患者护理而不是管理上,从而提高准确性,从而提高保存医疗记录的总体效率。随着这些琐碎任务的自动化,医疗专业人员在提高患者护理整体质量的同时,还享受到了成本效益。自动化还可以通过整理存储在其他医生或医疗中心数据库中的全部患者记录来实现健康记录的统一。由于 NLP,医疗保健变得具有成本效益,这刺激了全球 NLP 医疗保健生命科学的增长。
NLP 医疗保健生命科学市场增长机会
定制治疗方案
NLP 在制定个性化和有针对性的治疗计划方面发挥着关键作用。NLP 能够从电子健康记录、临床笔记和病史等各种来源提取和统一患者数据,从而轻松处理和识别患者的特定需求、遗传因素和健康状况。这有助于医疗保健提供者制定适合患者需求的治疗计划。制定个性化治疗计划是医生为患者制定最有效治疗方案的机会,从而扩大患者群。例如,NLP 可以突出显示患者病史中的模式,以便确定最有可能有效的药物,甚至可以识别与其他病例相似的病例中可能出现的副作用。因此,NLP 支持精准医疗,其中干预措施将更有针对性和更有效,从而提高治疗效率和患者预后。
将物联网融入可穿戴设备
结合物联网驱动的 NLP 的可穿戴设备能够捕获实时患者数据。它有助于全天远程监控患者的健康状况,并允许医疗保健专业人员记录任何并发症和变化,以便他们能够立即采取行动,制定行动计划,以防止将来出现任何此类复杂情况。
与制药和生物技术公司的合作
与制药和生物技术公司合作,将自然语言处理 (NLP) 整合到药物发现、临床试验管理和药物警戒流程中,可提高效率并加速生命科学领域的创新。NLP 通过自动从医疗记录和患者报告中提取数据来提高临床试验的效率,从而促进更快地招募和分析试验数据。
NLP 医疗生命科学市场规模增长挑战
医疗保健和健康科学领域的 NLP 通常使用一组特定的术语,而这些术语可能不适用于任何其他命令。由于人类语言不断发展,预定义的术语组可能会不准确地构造数据。这种情况通常发生在 NLP 程序具有一组内置术语时,这些术语可能与正在检查的非结构化数据不匹配。只要有一定程度的人为参与,这一挑战就很容易克服。
NLP 能够组织和分类非结构化数据。然而,面对人类语言的复杂性,该工具可能会变得效率低下。它可能无法应对复杂的语言、方言和参考点。因此,这增加了误报和漏报的可能性。
NLP 医疗保健生命科学市场规模增长限制
数据隐私和安全问题
在应用 NLP 解决方案时,处理敏感的患者信息将引发对隐私法和数据安全漏洞的严重担忧。尽管医疗服务提供商已经在探索充分实施 NLP 技术的各种机会,但他们必须遵守美国 HIPAA 和欧洲 GDPR 规定的严格数据保护法——这两项法律的制定目的都是为了维护患者的机密性并阻止可能未经授权访问个人健康信息。为了实现这一切,NLP 系统应该完全启用安全性。应确保通过应用强大的方法来加密静态和传输中的数据、非常严格的访问控制(将数据访问权限限制为仅限授权用户)和匿名化技术(帮助防止患者身份意外泄露)来满足这一要求。这些安全协议的聚合可以保证
NLP 系统的集成复杂性
将自然语言处理 (NLP) 系统与现有的医疗 IT 基础设施(包括 EHR 和临床系统)集成可能非常复杂且耗时。在部署 NLP 解决方案时,医疗机构面临着互操作性问题、数据标准化以及与旧系统兼容性等挑战。集成过程需要仔细规划、定制和与 IT 团队的协调,以确保跨不同平台的无缝连接和功能。此外,培训医疗人员有效利用 NLP 工具并解读生成的见解也带来了额外的实施挑战。
NLP 医疗保健生命科学市场范围和趋势
NLP 医疗保健生命科学市场细分概述 |
|||
段类型 |
子段 |
||
成分 |
独立解决方案和服务 |
||
NLP类型 |
基于规则的 NLP、统计 NLP、混合 NLP |
||
部署模式 |
本地、云 |
||
组织规模 |
大型企业、中小企业 |
||
|
|
||
终端用户 |
面向医生的 NLP、面向研究人员的 NLP、面向患者的 NLP、面向临床操作员的 NLP |
关键见解
- 近年来,随着人工智能的出现,它有望改变医疗保健领域的游戏规则,通过采用机器学习和 NLP 技术有效处理不断增长的数据量,推动了最令人印象深刻的应用之一——自动化临床编码,从而简化了医院和医学研究环境中临床记录的管理。
- 最近的调查显示,近几年来,关于利用深度学习(作为当前人工智能的主流方法)进行自动化临床编码的文章数量激增。
- 尽管人们已经解决了这些问题,并指出了聊天机器人的安全性和有效性,但医疗保健的人性化方面是无法取代的。这样,聊天机器人只能成为临床实践中不可或缺的一部分,与医疗保健专业人员协同工作,降低成本,提高工作流程效率,从而改进结果以获得更好的结果。
NLP 医疗保健生命科学市场区域分析 – 市场趋势
NLP 医疗保健生命科学市场区域概览 |
|
区域 |
国家 |
欧洲 |
德国、法国、英国、荷兰、瑞士、比利时、俄罗斯、意大利、西班牙、土耳其、欧洲其他地区 |
亚太地区 |
中国、日本、印度、韩国、新加坡、马来西亚、澳大利亚、泰国、印度尼西亚、菲律宾、亚太地区其他地区 |
北美 |
美国、加拿大和墨西哥 |
中东及非洲 |
沙特阿拉伯、阿联酋、南非、埃及、以色列、中东其他地区和非洲 |
南美洲 |
巴西、阿根廷和南美洲其他地区 |
关键见解
- 由于对 NLP 解决方案的需求不断增长,以及对机器人技术和 NLP 相关研发计划的大量投资,北美预计将占据市场主导地位。该地区先进的医疗基础设施和主要技术巨头的强大影响力促进了 NLP 技术在各种应用中的快速应用,包括临床文档、患者互动分析和数据分析。
- 由于广泛采用旨在优化业务运营的先进技术,亚太地区预计将出现显著增长。医疗 IT 基础设施投资的增加以及对 NLP 在改善临床决策过程和患者参与度方面的好处的认识不断提高是推动这一增长的关键因素。
- 荷兰科学研究组织 (NWO) 参与了应用 NLP 分析从生物医学研究中获得的科学数据的项目。目标是开发新的治疗方法并提高对疾病生物学的理解。
- 欧盟资助的欧洲健康数据空间 (EHDS) 项目致力于开发能够处理多种欧洲语言的 NLP 工具。该计划旨在创建标准化的 NLP 解决方案,以处理整个欧洲各种语言和方言的健康数据。
- 英国 NHS Digital 致力于将 NLP 技术集成到 EHR 系统中,以增强临床文档和信息检索。这种集成旨在提高患者数据的准确性,从另一个意义上讲,由于它可以自动从医疗记录中提取和分析数据,因此可以做出正确的临床决策。
- 在南非,Data Science Africa 开发了 NLP 模型,该模型旨在支持多种当地语言,包括南非荷兰语和祖鲁语等,以满足区域医疗保健体系内的多语言需求。
NLP 医疗生命科学市场领先企业
- 3M(美国)
- Cerner Corporation(美国)
- Nuance Communications Inc.(美国)
- 杜比系统公司(美国)
- 微软 (美国)
- IBM(美国)
- Google LLC(Alphabet Inc.)(美国)
- 亚马逊网络服务公司(美国)
- Apixio Inc.(美国)
- 阿韦尔比斯(德国)
- Clinithink(美国)
- Lexalytics(美国)
- 叙事科学(美国)
- JohnSnow Labs(美国)
- BenevolentAI(英国)
NLP 医疗保健生命科学市场最新发展
- 2024 年 2 月,Persistent Systems 与 Microsoft 合作发布了一款由生成式 AI 驱动的新型 PHM 解决方案。该先进解决方案旨在支持基于价值的护理模式,它使用 SDOH 来衡量非临床患者需求。因此,它提高了多种临床条件下医疗支出预测分析的准确性。
- 2023 年 6 月,价值型医疗保健人工智能解决方案领域的领导者 Apixio 完成了与 ClaimLogiq 的合并,后者是一家以在提高医疗计划预付款索赔准确性方面的专业知识而闻名的技术公司。新合并的实体将以 Apixio 的名称命名,并立即成为医疗保健数据和分析领域最大、最主要的参与者之一。此次战略合并将 Apixio 的先进人工智能与 ClaimLogiq 在索赔处理方面的精确性结合在一起,创建了一个提供全面见解和解决方案的强大平台。新 Apixio 希望通过提高数据准确性、实现成本预测的最优性以及推动更有效的基于价值的护理策略来彻底改变医疗保健管理——这是医疗保健分析行业的新标准。
DBMR 关于自然语言处理 NLP 医疗保健生命科学市场的市场报告将为您提供宝贵的见解,这些见解有助于您做出多项重要的业务决策。根据我们的报告和研究专业知识,您可以为您的业务制定切实可行的增长战略。
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。