Global Machine Learning Chip Market
市场规模(十亿美元)
CAGR :
%

![]() |
2025 –2032 |
![]() |
USD 5.00 Billion |
![]() |
USD 78.56 Billion |
![]() |
|
![]() |
|
>全球機器學習晶片市場細分,按晶片類型(GPU、ASIC、FPGA、CPU、其他)、技術(系統單晶片、系統級封裝、多晶片模組、其他)、行業垂直(媒體和廣告、BFSI、IT 和電信、零售、醫療保健、汽車和運輸、其他) - 行業趨勢和預測到 2032 年
機器學習晶片市場分析
機器學習晶片廣泛應用於汽車、交通、製造、媒體和廣告以及金融等各行業的錯誤預防和成本節省。硬體基礎設施包括儲存、運算、元件和網路。
機器學習晶片市場規模
2024 年全球機器學習晶片市場規模為 50 億美元,預計到 2032 年將達到 785.6 億美元,2025 年至 2032 年預測期內的複合年增長率為 41.10%。
報告範圍和市場細分
屬性 |
機器學習晶片關鍵市場洞察 |
分割 |
|
覆蓋國家 |
北美洲的美國、加拿大和墨西哥、歐洲的德國、法國、英國、荷蘭、瑞士、比利時、俄羅斯、義大利、西班牙、土耳其、歐洲其他地區、亞太地區 (APAC) 的中國、日本、印度、韓國、新加坡、馬來西亞、澳洲、泰國、印尼、菲律賓、亞太地區 (APAC) 的其他地區、沙烏地阿拉伯、阿聯酋、以色列、其他國家的歐洲地區和其他地區的歐洲地區。 |
主要市場參與者 |
谷歌公司(美國)、亞馬遜網路服務公司(美國)、超微半導體公司(美國)、比特大陸科技控股公司(中國)、英特爾公司(美國)、賽靈思公司(美國)、三星公司(韓國)、高通技術公司(美國)、NVIDIA 公司(美國)、Wave Computing 公司(美國)、Graphcore(美國)、IBIDIA 公司(美國)、Wave Computing 公司(美國公司)、Graphcore(英國)、美國股份公司(台灣)、美國股份公司(台灣)、Graphcore 公司(美國)。 |
市場機會 |
|
機器學習晶片市場定義
機器學習(ML)被定義為人工智慧(AI)的一部分 ,它通常透過體驗式學習而不是程式設計來完成決策任務。安裝這些晶片是為了增強智慧財產權核心。這些有助於透過 ML、功率、最佳化和分析來提高效能、面積(PPA)結果。
機器學習晶片市場動態
本節涉及了解市場驅動因素、優勢、機會、限制和挑戰。所有這些都將在下面詳細討論:
驅動程式
- 數位化趨勢興起
數位化趨勢的興起以及全球資訊科技(IT)產業的擴張是推動機器學習晶片市場成長的主要因素之一。深度學習演算法能夠自動攔截可用資料點,從而提高決策過程的準確性和效率。
- 網路攻擊增加
網路攻擊數量的增加促使各行各業採用資料庫管理、 詐欺偵測系統 和 網路安全 ,進而加速市場的發展。
與先進技術的融合
與大數據分析和雲端運算的結合為各個行業提供增強的服務進一步影響了市場。研究和開發(RandD)活動改進了深度學習的硬體和軟體處理解決方案。
此外,快速的城市化、生活方式的改變、投資的激增和消費者支出的增加對機器學習晶片市場產生了積極影響。
機會
此外,對開發人類感知人工智慧系統的關注度不斷提高,為 2025 年至 2032 年的預測期內的市場參與者帶來了盈利機會。
限制/挑戰
另一方面,低投資回報率和缺乏熟練的人工智慧勞動力預計將阻礙市場成長。此外,預計在 2025-2032 年的預測期內,有限的結構化資料將對機器學習晶片市場構成挑戰。
本機器學習晶片市場報告詳細介紹了近期發展、貿易法規、進出口分析、生產分析、價值鏈優化、市場份額、國內和本地化市場參與者的影響,分析了新興收入來源方面的機會、市場法規的變化、戰略市場增長分析、市場規模、類別市場增長、應用領域和主導地位、產品審批、產品發布、地理擴展、市場技術創新。要獲取有關機器學習晶片市場的更多信息,請聯繫 Data Bridge Market Research 獲取分析師簡報,我們的團隊將幫助您做出明智的市場決策,實現市場成長。
機器學習晶片市場範圍
機器學習晶片市場根據晶片類型、技術和行業垂直進行細分。這些細分市場之間的成長將幫助您分析行業中成長微弱的細分市場,並為用戶提供有價值的市場概覽和市場洞察,幫助他們做出策略決策,確定核心市場應用。
晶片類型
- 圖形處理器
- 專用積體電路 (ASIC)
- FPGA
- 中央處理器
- 其他的
- 西北大學
- 混合晶片
科技
- 系統
- 系統級封裝
- 多晶片模組
- 其他的
垂直產業
- 媒體與廣告
- 金融保險業協會
- 資訊科技和電信
- 零售
- 衛生保健
- 汽車和運輸
- 其他的
機器學習晶片市場區域分析
對機器學習晶片市場進行了分析,並按上述國家、晶片類型、技術和行業垂直提供了市場規模洞察和趨勢。
機器學習晶片市場報告涵蓋的國家包括北美的美國、加拿大和墨西哥、歐洲的德國、法國、英國、荷蘭、瑞士、比利時、俄羅斯、義大利、西班牙、土耳其、歐洲其他地區、亞太地區的中國、日本、印度、韓國、新加坡、馬來西亞、澳洲、泰國、印尼、菲律賓、亞太地區的亞太地區(APAC)、中東和非洲 (MEA) 的其他美洲地區。
由於人們對該地區關鍵基礎設施和敏感資料安全的擔憂日益增加,北美在機器學習晶片市場佔據主導地位。
由於該地區採用了先進技術,預計歐洲將在 2025 年至 2032 年的預測期內實現顯著增長。
報告的國家部分還提供了影響單一市場的因素以及影響市場當前和未來趨勢的國內市場監管變化。下游和上游價值鏈分析、技術趨勢和波特五力分析、案例研究等數據點是用於預測各國市場情景的一些指標。此外,在對國家數據進行預測分析時,還考慮了全球品牌的存在和可用性,以及由於來自本地和國內品牌的大量或稀缺的競爭而面臨的挑戰,國內關稅和貿易路線的影響。
機器學習晶片市場份額
機器學習晶片市場競爭格局提供了競爭對手的詳細資訊。其中包括公司概況、公司財務、收入、市場潛力、研發投資、新市場計劃、全球影響力、生產基地和設施、生產能力、公司優勢和劣勢、產品發布、產品寬度和廣度、應用主導地位。以上提供的數據點僅與公司對機器學習晶片市場的關注有關。
在市場上運作的機器學習晶片市場領導者是:
- 谷歌公司(美國)
- 亞馬遜網路服務公司(美國)
- 超微半導體公司 (美國)
- 比特大陸科技控股公司 (中國)
- 英特爾公司(美國)
- Xilinx(美國)、三星(韓國)
- 高通科技公司(美國)
- NVIDIA 公司(美國)
- Wave Computing, Inc.(美國)
- Graphcore(英國)
- IBM 公司(美國)
- 台灣半導體製造股份有限公司 (中國台灣)
- 美光科技公司(美國)
機器學習晶片市場最新發展
- 2020 年 5 月,NVIDIA 為其 EGX Edge AI 平台和 EGX A100 推出了兩款功能強大的產品,適用於更大型的商用現貨伺服器。這些平台能夠遠端安全地部署、更新和管理伺服器群。
- NVIDIA 於 2020 年 5 月宣布推出首款基於 NVIDIA Ampere 架構的 GPU NVIDIA A100。目前該設備已全面投入生產並發往全球客戶。它藉鑒了 NVIDIA Ampere 架構的設計突破,提供了該公司迄今為止最大的效能飛躍。
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。