Global Edge Ai Hardware Market
市场规模(十亿美元)
CAGR :
%

![]() |
2025 –2031 |
![]() |
USD 1.86 Billion |
![]() |
USD 4.94 Billion |
![]() |
|
![]() |
|
全球邊緣人工智慧 (AI) 硬體市場細分,按設備(智慧型手機、相機、機器人、穿戴式裝置、智慧揚聲器、汽車和智慧鏡子)、處理器(中央處理器 (CPU)、圖形處理器 (GPU)、專用集成電路 (ASIC) 等)、功耗(小於 1W、1-3W、3-5W、5-10W 和航太 10W國防、建築等)– 產業趨勢與預測到 2032 年
邊緣人工智慧(AI)硬體市場分析
由於技術進步和人工智慧應用的不斷普及,邊緣人工智慧 (AI) 硬體市場正在快速成長。邊緣人工智慧是指在更靠近源頭的地方(例如智慧型手機、物聯網設備和自動駕駛汽車等設備上)處理數據,而不是依賴集中式雲端數據中心。半導體晶片的最新創新,例如專用 AI 處理器和神經形態運算,顯著提高了邊緣設備的效率和功率。
最新的方法包括開發低功耗人工智慧晶片和邊緣運算框架,旨在邊緣高效運行機器學習模型。這些技術支援即時數據處理,減少延遲並提高智慧家庭、工業自動化和自主系統等應用中的決策速度。
隨著企業對更快、更可靠的人工智慧驅動解決方案的需求不斷增加,邊緣人工智慧硬體正在獲得發展動力。由於邊緣設備可以在本地處理數據而無需將其傳輸到雲端,從而可以更好地控制敏感訊息,因此市場對提高隱私和安全性的需求進一步推動了這一發展。預計這一趨勢將繼續推動市場成長。
邊緣人工智慧(AI)硬體市場規模
2024 年全球邊緣人工智慧 (AI) 硬體市場規模價值為 18.6 億美元,預計到 2032 年將達到 49.4 億美元,2025 年至 2032 年預測期內的複合年增長率為 20.84%。夥伴的網路佈局、詳細和更新的價格趨勢分析以及供應鏈和需求的赤字分析。
邊緣人工智慧 (AI) 硬體市場趨勢
“人工智慧邊緣設備的採用率不斷提高”
推動邊緣人工智慧 (AI) 硬體市場成長的一個特定趨勢是 AI 驅動的邊緣設備的採用率不斷提高。這些設備(例如智慧攝影機、感測器和自動駕駛汽車)旨在本地處理數據,從而減少延遲和頻寬消耗。由於製造業、醫療保健和汽車等行業依賴即時數據分析,這一趨勢至關重要。例如,在智慧工廠中,邊緣人工智慧能夠即時偵測缺陷,提高營運效率。此外,自動駕駛汽車使用邊緣人工智慧來處理感測器數據以進行即時決策,從而提高安全性和性能。隨著即時處理需求的成長,邊緣 AI 硬體在各個領域持續受到關注。
報告範圍和邊緣人工智慧(AI)硬體市場細分
屬性 |
邊緣人工智慧 (AI) 硬體關鍵市場洞察 |
涵蓋的領域 |
|
覆蓋國家 |
北美洲的美國、加拿大和墨西哥、德國、法國、英國、荷蘭、瑞士、比利時、俄羅斯、義大利、西班牙、土耳其、歐洲其他地區、歐洲的中國、日本、印度、韓國、新加坡、馬來西亞、澳洲、泰國、印尼、菲律賓、亞太地區 (APAC) 的其他地區、沙烏地阿拉伯、阿聯酋、南非、埃及、以色列、中東和非洲 (MEA) 的其他地區 |
主要市場參與者 |
思科系統公司(美國)、IBM(美國)、英特爾公司(美國)、三星(韓國)、Google(美國)、微軟(美國)、美光科技公司(美國)、NVIDIA 公司(美國)、甲骨文(美國)、Arm Limited(英國)、賽靈思(美國)、超微半導體公司(美國)科技公司(美國)科技公司(美國)科技公司(美國)社anix(美國)、Pure Storage 公司(美國)、亞馬遜網路服務公司(美國) |
市場機會 |
|
加值資料資訊集 |
除了對市場價值、成長率、細分、地理覆蓋範圍和主要參與者等市場情景的見解之外,Data Bridge Market Research 策劃的市場報告還包括深入的專家分析、按地理位置表示的公司生產和產能、分銷商和合作夥伴的網絡佈局、詳細和更新的價格趨勢分析以及供應鏈和需求的赤字分析。 |
邊緣人工智慧(AI)硬體市場定義
邊緣人工智慧 (AI) 硬體是指專門設計用於直接在資料來源或「邊緣」處理 AI 任務的運算設備,而不是依賴基於雲端的伺服器。這些設備(例如邊緣 GPU、TPU 和客製化 AI 晶片)可實現即時資料處理,具有更低的延遲、更少的頻寬使用量並增強了隱私性。邊緣 AI 硬體常用於物聯網設備、自動駕駛汽車、工業自動化和智慧相機,透過允許 AI 模型在本地運行來優化效能。這減少了對集中式雲端基礎架構的依賴,提高了人工智慧驅動應用程式的速度、可靠性和可擴展性。
邊緣人工智慧 (AI) 硬體市場動態
驅動程式
- 物聯網設備的採用率不斷提高
物聯網(IoT)的快速成長是邊緣AI硬體市場的重要推手。隨著智慧相機、穿戴式裝置和工業感測器等物聯網裝置的激增,對本地資料處理的需求日益增加。邊緣 AI 硬體允許這些設備在現場處理數據,從而減少與雲端運算相關的延遲和頻寬成本。例如,在智慧家庭系統中,健身追蹤器等穿戴式裝置利用邊緣 AI 進行即時數據分析,無需依賴雲端伺服器即可實現個人化回饋。這種分散的方法提高了效率,確保了隱私,並最大限度地減少了對持續雲端連接的依賴,從而推動了對邊緣 AI 硬體解決方案的需求。
- 5G部署
5G網路的部署是邊緣AI硬體市場的重要推手。借助 5G 更快的速度和更低的延遲,邊緣設備現在可以在本地處理數據,從而減少對雲端伺服器的依賴並實現即時決策。例如,2021 年 2 月,Telstra 與 AWS 合作,將其 5G 網路與 AWS 的邊緣技術結合。此次合作旨在利用整合到 Telstra 5G 基礎設施中的 AWS 邊緣運算來提高 5G 應用程式的效能。此次合作旨在增強邊緣運算能力,釋放澳洲各行業即時應用的潛力。
機會
- 人工智慧和機器學習演算法的進步
針對邊緣設備的更有效率的機器學習(ML)和人工智慧(AI)演算法的不斷發展,為邊緣AI硬體市場帶來了巨大的機會。這些演算法旨在優化處理能力和能耗有限的硬體的性能,從而可以在更小、更節能的設備上實現先進的人工智慧功能。這對於智慧相機、穿戴式裝置和自主系統等需要即時決策而不依賴雲端運算的應用尤其有價值。例如,2024 年 3 月,HPE 推出了使用微服務和 Nvidia GPU 軟體的新型 GenAI 訓練和推理產品。他們的邊緣到資料中心、混合和雲端解決方案旨在加速 GenAI 功能。介紹包括由 Nvidia 元件驅動的超級運算系統,旨在增強 AI 模型訓練和推理,滿足企業對 AI 驅動的效能和可擴展性的需求。隨著人工智慧模型變得更有效率和輕量,醫療保健、汽車和製造等行業的企業可以實施經濟高效且可擴展的邊緣人工智慧解決方案,從而加速市場成長。
- 消費性電子領域人工智慧的興起
人工智慧在智慧揚聲器、電視和相機等消費性電子產品中的日益融合為邊緣人工智慧硬體市場帶來了重大機會。隨著設備變得越來越智能,它們需要更強大、更有效率的硬體來本地處理數據,以確保快速回應並增強用戶體驗。例如,智慧揚聲器中的語音辨識或相機中的臉部辨識等人工智慧驅動的功能需要高效能的邊緣運算解決方案。這種需求推動了對無需依賴雲端處理即可處理複雜任務的專用 AI 晶片和硬體的需求,最終為製造商提供競爭優勢並促進邊緣 AI 硬體市場的成長。
限制/挑戰
- 高功耗
高功耗仍然是邊緣 AI 硬體市場面臨的重大挑戰。邊緣AI設備需要大量運算能力來本地處理數據,這會導致能耗增加。對於電源有限的電池供電或可攜式設備來說,這個問題尤其嚴重。隨著對高性能人工智慧模型的需求不斷增長,高效能能源使用的需求變得更加迫切。電池壽命不足會導致設備的運行時間縮短,需要頻繁充電或使用更大的電池,進而增加設備的重量和尺寸。因此,高功耗限制了邊緣 AI 解決方案的廣泛採用,尤其是在便攜性和長電池壽命至關重要的應用中。
- 資料隱私和安全
資料隱私和安全對邊緣AI硬體市場構成了重大挑戰。由於敏感資料在邊緣設備上本地處理,因此確保其機密性和免受網路威脅成為關鍵問題。與集中式雲端系統相比,這些設備通常更容易受到安全漏洞的攻擊,因此成為網路攻擊的目標。此外,遵守不斷發展的資料保護法規(例如 GDPR)使情況變得更加複雜。邊緣設備的分散性意味著在所有設備上實施一致的安全措施非常困難,從而增加了資料外洩或未經授權存取的風險。缺乏強大的安全框架阻礙了市場的廣泛採用和成長。
本市場報告詳細介紹了近期發展、貿易法規、進出口分析、生產分析、價值鏈優化、市場份額、國內和本地市場參與者的影響,分析了新興收入來源方面的機會、市場法規的變化、戰略市場增長分析、市場規模、類別市場增長、應用領域和主導地位、產品審批、產品發布、地理擴展、市場技術創新。要獲取更多市場信息,請聯繫 Data Bridge Market Research 獲取分析師簡報,我們的團隊將幫助您做出明智的市場決策,實現市場成長。
邊緣人工智慧(AI)硬體市場範圍
市場根據設備、處理器、功耗和最終用戶行業進行細分。這些細分市場之間的成長將幫助您分析行業中的微薄成長細分市場,並為用戶提供有價值的市場概覽和市場洞察,幫助他們做出策略決策,確定核心市場應用。
裝置
處理器
- 中央處理器 (CPU)
- 圖形處理單元 (GPU)
- 專用積體電路(ASIC)
- 其他的
耗電量
- 小於1W
- 1-3瓦
- 3-5瓦
- 5-10瓦
- 超過10W
過程
- 訓練
- 推理
最終用戶產業
邊緣人工智慧(AI)硬體市場區域分析
對市場進行了分析,並按上述設備、處理器、功耗和最終用戶行業提供了市場規模洞察和趨勢。
市場報告涉及的國家包括北美洲的美國、加拿大、墨西哥、德國、瑞典、波蘭、丹麥、義大利、英國、法國、西班牙、荷蘭、比利時、瑞士、土耳其、俄羅斯、歐洲的其他地區、歐洲的日本、中國、印度、韓國、紐西蘭、越南、澳洲、新加坡、馬來西亞、泰國、印尼、菲律賓、亞太地區 (APAC) 的其他地區、巴西(南美洲的美國地區)其他地區(中東和非洲 (MEA) 的一部分)。
由於北美地區人工智慧伺服器的採用率很高,且擁有知名的人工智慧技術供應商,預計北美將主導邊緣人工智慧(AI)硬體市場。北美的公司,例如 NVIDIA、英特爾和 IBM,正在推動 AI 硬體技術的進步。該地區強大的基礎設施、熟練的勞動力和對人工智慧研究的投資進一步鞏固了其主導地位,使北美成為邊緣人工智慧硬體領域的關鍵參與者。
由於5G網路和資料中心等「新基礎設施」項目的持續建設,預計亞太地區的邊緣人工智慧(AI)硬體市場將顯著成長。電信、製造業和醫療保健等行業越來越多地採用人工智慧驅動的解決方案,進一步推動了市場需求。此外,智慧城市計畫的興起和即時數據處理的需求是支援該地區人工智慧硬體技術擴展的關鍵驅動因素。
報告的國家部分還提供了影響市場當前和未來趨勢的單一市場影響因素和市場監管變化。下游和上游價值鏈分析、技術趨勢和波特五力分析、案例研究等數據點是用於預測各國市場情景的一些指標。此外,在對國家數據進行預測分析時,還考慮了全球品牌的存在和可用性,以及由於來自本地和國內品牌的大量或稀缺的競爭而面臨的挑戰,國內關稅和貿易路線的影響。
邊緣人工智慧(AI)硬體市場份額
市場競爭格局提供了競爭對手的詳細資訊。其中包括公司概況、公司財務、收入、市場潛力、研發投資、新市場計劃、全球影響力、生產基地和設施、生產能力、公司優勢和劣勢、產品發布、產品寬度和廣度、應用主導地位。以上提供的數據點僅與公司對市場的關注有關。
在市場上運營的邊緣人工智慧 (AI) 硬體市場領導者是:
- 思科系統公司(美國)
- IBM(美國)
- 英特爾公司(美國)
- 三星(韓國)
- Google(美國)
- 微軟 (美國)
- 美光科技公司(美國)
- NVIDIA 公司 (美國)
- 甲骨文 (美國)
- Arm Limited(英國)
- Xilinx(美國)
- 超微半導體公司 (美國)
- 戴爾(美國)
- 惠普企業發展有限公司 (美國)
- Habana Labs Ltd(美國)
- Facebook, Inc(美國)
- Synopsys 公司(美國)
- Nutanix (美國)
- Pure Storage, Inc(美國)
- 亞馬遜網路服務公司(美國)
邊緣人工智慧(AI)硬體市場的最新發展
- 2024 年 7 月,威盛科技與 Rutronik 合作,增強其先進物聯網、邊緣 AI 和電腦視覺技術的可近性。此次策略合作針對工業、零售和商業領域,重點在於即時數據處理和減少延遲。威盛智慧邊緣解決方案搭載聯發科 Genio 處理器,專為這些領域的各種應用量身定制
- 2024 年 7 月,通快與專注於嵌入式邊緣機器學習系統的軟體中心公司 SiMa.ai 合作,將 AI 功能整合到通快的雷射系統中。此次合作的目標是焊接、切割、標記和粉末金屬 3D 列印領域的應用。該聯盟將為通快的雷射技術提供先進的人工智慧,以實現更有效率、更精確的操作
- 2024 年 3 月,Edge Impulse Inc. 推出了與 Arm Keil MDK 的直接集成,提供對高級機器學習 (ML) 和 AI 模型的存取。這種整合促進了嵌入式系統專家和團隊之間的協作,幫助他們更有效地開發並將邊緣 AI 工具推向市場。該計劃旨在簡化邊緣設備的機器學習模型的開發
- 2024 年 3 月,HPE 推出了新的 GenAI 訓練和推理產品,採用微服務和 Nvidia GPU 軟體。他們的邊緣到資料中心、混合和雲端解決方案旨在加速 GenAI 功能。此次推出的產品包括由 Nvidia 組件驅動的超級運算系統,旨在增強 AI 模型訓練和推理,滿足企業對 AI 驅動的效能和可擴展性的需求
- 2022 年 9 月,Nvidia 利用 Nvidia IGX 平台擴展了其針對醫療保健和機器人技術的邊緣人工智慧技術。該平台針對工業和醫療應用,旨在加速性能並實現即時洞察。此次擴展提供了尖端的人工智慧解決方案,可增強醫療保健和機器人等關鍵領域的功能和回應能力
- 2021年2月,Telstra 與 AWS 合作,將其 5G 網路與 AWS 的邊緣技術結合。此次合作旨在利用整合到 Telstra 5G 基礎設施中的 AWS 邊緣運算來提高 5G 應用程式的效能。此次合作旨在增強邊緣運算能力,釋放澳洲各產業即時應用的潛力
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。