Global Deep Learning In Machine Vision Market
市场规模(十亿美元)
CAGR :
%

![]() |
2025 –2032 |
![]() |
USD 5.13 Billion |
![]() |
USD 13.18 Billion |
![]() |
|
![]() |
|
全球機器視覺深度學習市場細分,按產品(硬體、軟體和服務)、應用(檢查、圖像分析、異常檢測、物件分類、物件追蹤、計數、條碼偵測、特徵偵測、位置偵測、光學字元辨識、臉部辨識、實例分割等)、物件(影像和視訊)、垂直(電子、製造、汽車和運輸、食品和飲料、實例分割等)、物件(圖像和視訊)、垂直(電子、製造、汽車和運輸、食品和飲料、航空航太、醫療
深度學習在機器視覺市場的規模
- 2024 年全球機器視覺深度學習市場價值為51.3 億美元,預計到 2032 年將達到 131.8 億美元
- 在 2025 年至 2032 年的預測期內,市場可能以12.50% 的複合年增長率成長,主要原因是對自動化品質檢測的需求不斷增長
- 這一增長是由人工智慧圖像識別的日益普及以及機器視覺系統在製造業、醫療保健和汽車等行業的廣泛應用所推動的。
機器視覺深度學習市場分析
- 機器視覺市場的深度學習正在經歷顯著增長,這得益於對自動化品質檢測的需求不斷增長、人工智慧影像識別的採用日益增多以及機器視覺與多個行業工業自動化的融合
- 高效能運算、邊緣人工智慧和深度神經網路的進步正在增強基於視覺的系統的功能,從而實現製造、醫療保健和汽車行業的即時決策、缺陷檢測和改進的流程自動化
- 由於領先的科技公司實力雄厚、研發投入強勁,以及汽車和電子等產業廣泛採用人工智慧自動化,北美在機器視覺深度學習市場佔據主導地位
- 例如,在美國,NVIDIA 和 Cognex 等公司正在開發人工智慧驅動的視覺系統,以加強品質控制並簡化生產流程
- 人工智慧驅動的缺陷檢測、基於深度學習的物體追蹤以及機器人技術中的機器視覺整合等新興趨勢正在改變機器視覺領域的深度學習,使其成為現代工業自動化和品質保證的關鍵組成部分
報告範圍和機器視覺市場細分中的深度學習
屬性 |
機器視覺深度學習關鍵市場洞察 |
涵蓋的領域 |
|
覆蓋國家 |
北美洲
歐洲
亞太
中東和非洲
南美洲
|
主要市場參與者 |
|
市場機會 |
|
加值資料資訊集 |
除了對市場價值、成長率、細分、地理覆蓋範圍和主要參與者等市場情景的洞察之外,Data Bridge Market Research 策劃的市場報告還包括深入的專家分析、按地理代表的公司生產和產能、分銷商和合作夥伴的網絡佈局、詳細和更新的價格趨勢分析以及供應鏈和需求的缺口分析 |
機器視覺深度學習市場趨勢
“人工智慧缺陷檢測的進步”
- 影響機器視覺市場深度學習的一個主要趨勢是,製造業、汽車業和電子業等行業越來越多地採用人工智慧缺陷檢測,這是由對更高精度和減少人為錯誤的需求所驅動的。
- 公司正在利用深度學習演算法、邊緣運算和即時視覺分析來增強品質控制流程,最大限度地減少缺陷並提高生產效率
- 例如,2023 年 10 月,康耐視公司推出了 In-Sight 3800 視覺系統,該系統具有深度學習驅動的缺陷檢測功能,可提高製造精度並簡化自動化檢測
- 人工智慧驅動的異常檢測、自動根本原因分析和預測性維護等先進技術正在整合到機器視覺系統中,以優化缺陷識別並減少操作停機時間
- 這一趨勢正在徹底改變機器視覺產業的深度學習,提高生產質量,減少浪費,推動人工智慧驅動的視覺檢測系統的採用,確保企業獲得更高的效率和成本效益
機器視覺市場動態中的深度學習
司機
“人工智慧驅動的品質檢測在製造業的應用日益廣泛”
- 由於製造業對人工智慧品質檢測的依賴日益增加,對更高精度、更高效率和缺陷檢測的需求不斷增加,機器視覺市場的深度學習正在快速增長
- 該公司正在將機器視覺系統與深度學習演算法相結合,以增強即時視覺檢測、減少人為錯誤並優化生產線,從而提高一致性和輸出質量
- 例如,2024 年 4 月,西門子與 NVIDIA 合作,將 AI 驅動的機器視覺解決方案整合到其製造流程中,增強了自動化品質控制並最大限度地減少了生產缺陷
- 人工智慧視覺系統可實現預測性維護、自動異常檢測和即時缺陷分類,從而降低營運成本並提高製造精度
- 此驅動力將透過提高生產效率、最大限度地減少停機時間並提高各行業的整體產品品質來加速機器視覺市場深度學習的成長
機會
“醫療保健領域人工智慧視覺系統的採用日益增多”
- 隨著醫療保健產業越來越多地採用人工智慧視覺系統進行醫學成像、診斷和機器人輔助手術,機器視覺市場的深度學習有望大幅擴張
- 對自動影像分析、異常檢測和即時患者監控的需求正在推動對基於深度學習的視覺解決方案的投資,以提高醫療程序的準確性和效率
- 例如,2025 年 1 月,GE 醫療推出了一款人工智慧驅動的醫學影像系統,利用深度學習來改善癌症和神經系統疾病等疾病的早期檢測
- 醫療保健提供者和研究機構正在將深度學習視覺技術融入病理學、放射學和機器人手術中,以實現精準診斷並減少人為錯誤
- 這一機會有望透過徹底改變醫學影像、改善患者治療效果以及促進人工智慧驅動的醫療創新進步,推動機器視覺市場深度學習的長期成長
克制/挑戰
“實施成本高,整合複雜”
- 由於實施成本高昂,以及將人工智慧視覺系統整合到現有工業工作流程中的複雜性,機器視覺市場的深度學習面臨重大挑戰
- 由於需要專用硬體、大量資料訓練和先進的運算能力,部署基於深度學習的視覺解決方案是一項成本高昂的工作,尤其是對於中小型企業 (SME) 而言
- 例如,2024 年 6 月,一家歐洲汽車製造商在部署基於人工智慧的視覺檢測系統時面臨延遲,原因是前期成本高昂,而且需要對員工進行人工智慧驅動的自動化工具再培訓
- 此外,與傳統系統的兼容性問題、缺乏熟練的人工智慧專業人員以及需要不斷改進演算法,都對各行各業的無縫採用構成了障礙
- 克服這些挑戰需要具有成本效益的人工智慧模型、可擴展的深度學習解決方案以及戰略合作夥伴關係,以促進更順暢的整合並推動其在工業應用中的廣泛採用
機器視覺市場範圍中的深度學習
市場根據產品、應用、物件和垂直進行細分。
分割 |
細分 |
透過提供 |
|
按應用 |
|
依對象 |
|
按垂直
|
|
機器視覺深度學習市場區域分析
“北美是機器視覺深度學習市場的主導地區”
- 北美擁有高度發展的人工智慧和自動化生態系統,加速了深度學習技術在機器視覺應用中的採用
- 該地區成熟的工業和製造業推動了對基於深度學習的自動化品質控制、缺陷檢測和預測性維護解決方案的需求
- 各大人工智慧和機器視覺公司與頂尖研究機構攜手,推動深度學習驅動的視覺系統的持續創新和規模化落地
- 這些因素共同使北美成為主導市場,促進了機器視覺產業深度學習的創新、投資和持續擴張
“北美預計將實現最高成長率”
- 製造業、醫療保健和汽車等行業越來越多地採用自動化和人工智慧驅動的品質控制系統,推動市場成長
- 深度學習在機器視覺領域的應用不斷擴展,包括缺陷檢測、物體識別和預測性維護,正在推動先進解決方案的需求
- 政府對智慧工廠、工業 4.0 和人工智慧驅動的工業自動化的舉措和投資正在加速機器視覺技術的採用
- 這些因素共同使北美成為機器視覺深度學習市場成長最快的地區,促進了各行業的創新和廣泛部署
深度學習在機器視覺市場中佔有率
市場競爭格局提供了競爭對手的詳細資訊。詳細資訊包括公司概況、公司財務狀況、收入、市場潛力、研發投資、新市場計劃、全球影響力、生產基地和設施、生產能力、公司優勢和劣勢、產品發布、產品寬度和廣度、應用優勢。以上提供的數據點僅與公司對市場的關注有關。
市場中主要的市場領導者有:
- 康耐視公司(美國)
- 英特爾公司(美國)
- 美國國家儀器公司(美國)
- SICK AG(德國)
- Datalogic SpA(義大利)
- STEMMER IMAGING AG INH ON(德國)
- Abto Software(烏克蘭)
- 斑馬技術公司(美國)
- 奧托尼克斯公司(韓國)
- 巴斯勒股份公司(德國)
- Cyth Systems, Inc.(美國)
- Euresys(比利時)
- IDS Imaging Development Systems GmbH(德國)
- LeewayHertz(美國)
- MVTEC SOFTWARE GMBH(德國)
- 歐姆龍株式會社(日本)
- perClass BV(荷蘭)
- 品質技術(印度)
- RSIP Vision(以色列)
- USS Vision LLC(美國)
- Viska Automation Systems Ltd. T/A Viska Systems(愛爾蘭)
全球機器視覺深度學習市場的最新發展
- 2025年1月,NVIDIA公司加強與豐田、Aurora、大陸等主要汽車公司的合作,加速高度自動化和自動駕駛汽車車隊的發展。透過利用先進的人工智慧驅動的視覺處理能力,NVIDIA 旨在提高自動駕駛系統的安全性和功能性,鞏固其在自動駕駛汽車技術領域的領先地位。此次擴張預計將推動人工智慧移動解決方案的重大進步,塑造自動駕駛交通的未來
- 2024 年 5 月,安富利公司推出了 QCS6490 Vision-AI 開發套件,使工程團隊能夠快速製作具有多相機功能的高性能 Edge AI 嵌入式產品的原型。該套件採用基於 Qualcomm QCS6490 處理器的節能 MSC SM2S-QCS6490 SMARC 運算模組,有助於在各行業中更快地部署 AI 驅動的視覺解決方案。這項創新將加速人工智慧視覺應用的採用,並提高各領域的效率
- 2024 年 5 月,微軟公司推出了 GPT-4 Turbo with Vision,這是一種旨在處理文字和圖像輸入的多模式 AI 模型。該模型透過實現高級影像和視訊分析、文字生成、光學字元辨識 (OCR) 和物件接地來增強各種應用,推動多個領域採用人工智慧自動化。該模型的推出有望徹底改變人工智慧驅動的影像處理,增強業務營運和自動化能力
- 2024 年 4 月,康耐視公司推出了 In-Sight L38 3D 視覺系統,將 AI 與 2D 和 3D 視覺技術相結合,以增強檢查和測量過程。透過創建嵌入 3D 資料的 2D 影像,該系統簡化了訓練,提高了特徵檢測的準確性,並確保了一致的檢查結果,從而提高了工業自動化能力。這項進步可望改變品質控制和製造流程,提高工業應用的精度和效率
- 2024年4月,IBM推出了適用於z/OS的IBM Z IntelliMagic Vision軟體平台,這是針對IBM Z系統的效能分析解決方案。該平台憑藉其客製化的無程式碼視覺化和靈活的數據分析工具,使分析師能夠識別潛在風險並優化工作負載,從而提高企業 IT 營運的效率和可靠性。此次發布彰顯了 IBM 致力於提升企業 IT 效能、確保更高營運彈性和效率的承諾
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。