Global Ai Code Market
市场规模(十亿美元)
CAGR :
%

![]() |
2024 –2031 |
![]() |
USD 4.29 Billion |
![]() |
USD 24.46 Billion |
![]() |
|
![]() |
全球 AI 代码市场,按操作(代码生成、代码增强、语言翻译、代码审查)、应用(数据科学和分析、游戏开发和设计、Web 和应用程序开发、物联网和智能设备)、垂直(BFSI、媒体和娱乐、IT 和电信、医疗保健和生命科学、运输和物流、零售和电子商务)划分 - 行业趋势和预测到 2031 年。
AI代码市场分析及规模
将人工智能和机器学习方法集成到软件开发中,导致了编码中生成式人工智能的兴起。这项技术使开发人员能够自动化和增强编码的不同方面,从而简化了编写代码的过程。这一发展减少了传统编码任务中对人工参与的需求,从而缩短了开发周期并提高了生产率。生成式人工智能 (AI) 对于管理机器学习、深度学习和数据分析软件应用程序中的复杂编码至关重要。
Data Bridge Market Research 分析称,2023 年全球 AI 代码市场价值为 42.9 亿美元,预计到 2031 年将达到 244.6 亿美元,在 2024-2031 年预测期内的复合年增长率为 24.30%。由于低代码和无代码平台的采用日益增多,“代码生成”部分在 AI 代码市场中占据主导地位,使非开发人员能够参与应用程序开发并加速整体软件创建。除了市场价值、增长率、细分市场、地理覆盖范围、市场参与者和市场情景等市场洞察外,Data Bridge Market Research 团队策划的市场报告还包括深入的专家分析、进出口分析、定价分析、生产消费分析和 pestle 分析。
报告范围和市场细分
报告指标 |
细节 |
预测期 |
2024 至 2031 年 |
基准年 |
2023 |
历史岁月 |
2022 (可定制为 2016-2021) |
定量单位 |
收入(单位:十亿美元)、销量(单位:台)、定价(美元) |
涵盖的领域 |
按操作(代码生成、代码增强、语言翻译、代码审查)、应用(数据科学和分析、游戏开发和设计、Web 和应用程序开发、物联网和智能设备)、垂直(BFSI、媒体和娱乐、IT 和电信、医疗保健和生命科学、运输和物流、零售和电子商务) |
覆盖国家 |
美国、加拿大、墨西哥、巴西、阿根廷、南美洲其他地区、德国、意大利、英国、法国、西班牙、荷兰、比利时、瑞士、土耳其、俄罗斯、欧洲其他地区、日本、中国、印度、韩国、澳大利亚、新加坡、马来西亚、泰国、印度尼西亚、菲律宾、亚太其他地区、沙特阿拉伯、阿联酋、南非、埃及、以色列、中东和非洲其他地区 |
涵盖的市场参与者 |
Codecademy(美国)、CodiumAI(美国)、DeepCode(瑞士)、Google LLC(美国)、IBM Corporation(美国)、Microsoft Corporation(美国)、NVIDIA Corporation(美国)、OpenAI(美国)、Tabnine(以色列)、Codota(以色列) |
市场机会 |
|
市场定义
AI 代码是指编写或生成的一组指令和算法,用于使人工智能系统能够执行特定任务、从数据中学习并在无需明确编程的情况下做出决策。此代码包含机器学习模型、神经网络架构和其他计算指令,使 AI 应用程序能够表现出智能行为并适应不同的输入或场景。
全球人工智能代码市场动态
驱动程序
- 金融领域人工智能代码的实施日益增多
随着人工智能驱动代码的不断实施,金融行业正在经历巨大的范式转变。从算法交易和欺诈检测到个性化财务建议,人工智能正在彻底改变金融机构的运营方式。人工智能代码的精确性和适应性不仅可以提高复杂财务分析的速度和准确性,还可以提供无与伦比的洞察力,改变决策过程。人工智能代码在金融行业日益增长的潜力可以成为市场增长的驱动力,并带来智能金融解决方案的新时代。
- 人工智能(AI)与机器学习(ML)的融合
人工智能 (AI) 和机器学习 (ML) 的无缝集成站在创新的前沿。这种融合使开发人员能够利用智能算法的强大功能,使系统不仅能够执行预定义的任务,还能自主学习和适应。随着企业寻求从庞大的数据集中提取可操作的见解并增强决策过程,代码中 AI 和 ML 的融合变得非常重要。这种集成不仅优化了效率,还为不同行业的突破性应用铺平了道路,这可能是市场增长的主要因素。
机会
- 生成式人工智能在媒体和娱乐编码领域的应用日益广泛
生成式人工智能在编码中的应用正在改变创意格局。随着对个性化和创新内容的需求不断增长,人工智能驱动的代码生成成为提高效率和创造力的催化剂。从自动执行重复的编程任务到制作复杂的视觉效果和动态叙事算法,生成式人工智能正在改变代码塑造电影、游戏和数字媒体中沉浸式体验的方式。创造力和代码之间的这种变革性协调可以为人工智能代码市场打开新的机遇之门。
克制/挑战
- 与技术发展相关的道德和监管挑战
随着人工智能逐渐融入各个领域,人们对数据隐私、算法偏见以及自主决策的潜在社会影响的担忧引发了复杂的问题。保持创新与负责任的使用之间的平衡是一项重大挑战,需要建立健全的框架和标准来指导人工智能代码的道德开发和部署。确保透明度和问责制对于在不断扩大的人工智能代码市场中建立信任和降低潜在风险至关重要,这可能会对市场增长构成挑战。
这份 AI 代码市场报告详细介绍了最新发展、贸易法规、进出口分析、生产分析、价值链优化、市场份额、国内和本地市场参与者的影响,分析了新兴收入领域的机会、市场法规的变化、战略市场增长分析、市场规模、类别市场增长、应用领域和主导地位、产品批准、产品发布、地域扩展、市场技术创新。要获取有关 AI 代码市场的更多信息,请联系 Data Bridge Market Research 获取分析师简报,我们的团队将帮助您做出明智的市场决策,以实现市场增长。
最新动态
- 2019 年 12 月,英特尔完成对以色列深度学习公司 Habana Labs 的收购,以增强其 AI 产品组合
- 2019 年 9 月,IBM 与法国医学成像公司 Guerbet 达成协议,开发基于 AI 的癌症监测和诊断解决方案
全球人工智能代码市场范围
AI代码市场根据操作、应用和垂直细分。这些细分市场之间的增长将帮助您分析行业中微弱的增长细分市场,并为用户提供有价值的市场概览和市场洞察,帮助他们做出战略决策,以确定核心市场应用。
手术
- 代码生成
- 代码增强
- 语言翻译
- 代码评审
应用
- 数据科学与分析
- 游戏开发与设计
- Web 和应用程序开发
- 物联网和智能设备
垂直的
- 金融保险业协会
- 媒体和娱乐
- 信息技术和电信
- 医疗保健和生命科学
- 运输与物流
- 零售与电子商务
全球 AI 代码市场区域分析/洞察
对 AI 代码市场进行了分析,并按国家、运营、应用和垂直行业提供了上述市场规模洞察和趋势。
AI 代码市场报告涵盖的国家包括美国、加拿大、墨西哥、德国、法国、英国、荷兰、瑞士、比利时、俄罗斯、意大利、西班牙、土耳其、欧洲其他地区、中国、日本、印度、韩国、新加坡、马来西亚、澳大利亚、泰国、印度尼西亚、菲律宾、亚太其他地区、沙特阿拉伯、阿联酋、南非、埃及、以色列、中东和非洲其他地区、巴西、阿根廷和南美洲其他地区。
北美预计将在 AI 代码市场中占据主导地位,并且由于其在 AI 代码市场中扮演着重要角色,并且越来越重视跨行业协作和知识交流,因此其增长率最高。这种协作方式促进了创新,通过利用各种专业知识并加速各个行业 AI 代码的进步,推动了该地区的领导地位
报告的国家部分还提供了影响市场当前和未来趋势的各个市场影响因素和国内市场监管变化。下游和上游价值链分析、技术趋势和波特五力分析、案例研究等数据点是用于预测各个国家市场情景的一些指标。此外,在提供国家数据的预测分析时,还考虑了全球品牌的存在和可用性以及由于来自本地和国内品牌的大量或稀缺竞争而面临的挑战、国内关税的影响和贸易路线。
竞争格局和全球 AI 代码市场份额分析
AI 代码市场竞争格局提供了竞争对手的详细信息。详细信息包括公司概况、公司财务状况、产生的收入、市场潜力、研发投资、新市场计划、欧洲业务、生产基地和设施、生产能力、公司优势和劣势、产品发布、产品宽度和广度以及应用主导地位。以上提供的数据点仅与公司对 AI 代码市场的关注有关。
人工智能代码市场的一些主要参与者包括:
- Codecademy(美国)
- CodiumAI(美国)
- DeepCode(瑞士)
- Google LLC(美国)
- IBM 公司(美国)
- 微软公司(美国)
- NVIDIA 公司 (美国)
- OpenAI(美国)
- 塔布尼 (以色列)
- 科多塔(以色列)
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。