欧洲药物发现市场的人工智能 (AI),按应用(新型候选药物、药物优化和重新利用临床前测试和批准、药物监测、寻找新疾病相关靶点和途径、了解疾病机制、汇总和综合信息、假设的形成和限定、从头药物设计、寻找旧药的药物靶点等)、技术(机器学习、深度学习、自然语言处理等)、药物类型(小分子和大分子)、产品(软件和服务)、适应症(免疫肿瘤学、神经退行性疾病、心血管疾病、代谢疾病等)、最终用途(合同研究组织 (CRO)、制药和生物技术公司、研究中心和学术机构等)行业趋势和预测到 2029 年。
欧洲人工智能 (AI) 药物研发市场分析与洞察
人工智能 (AI) 有望成为医疗保健行业的一项利润丰厚的技术。人工智能的实施减少了药品制造过程中的研发差距,并有助于有针对性地制造 药品。 因此, 生物制药 公司正在转向人工智能来提高市场份额。药物研发人工智能是一种利用机器模拟人类智能来解决药物研发中复杂挑战的技术。 药品 开发过程。
在临床试验过程中采用人工智能解决方案可消除可能的障碍,缩短临床试验周期,并提高临床试验过程的生产率和准确性。药物发现人工智能技术的进步和药物发现过程总时间的减少是预测期内推动市场增长的其他因素。然而,低质量和不一致的可用数据将阻碍市场增长。此外,与技术相关的高成本和技术限制将抑制市场增长。
Data Bridge Market Research 分析称,预计到 2029 年,欧洲药物研发人工智能 (AI) 市场的价值将达到 48.9195 亿美元,预测期内的复合年增长率为 52.0%。由于技术进步的快速发展,AI 在药物研发市场中的应用得以商业化,软件成为市场上最大的技术领域。本市场报告还深入介绍了定价分析、专利分析和技术进步。
报告指标 |
细节 |
预测期 |
2022 至 2029 年 |
基准年 |
2021 |
历史岁月 |
2020 (可定制为 2019-2014) |
定量单位 |
收入(百万美元),定价(美元) |
涵盖的领域 |
按应用(新型候选药物、药物优化和再利用临床前测试和批准、药物监测、寻找新的疾病相关靶点和途径、了解疾病机制、汇总和综合信息、假设的形成和验证、从头药物设计、寻找旧药的药物靶点等)、技术(机器学习、深度学习、自然语言处理等)、药物类型(小分子和大分子)、产品(软件和服务)、适应症(免疫肿瘤学、神经退行性疾病、心血管疾病、代谢疾病等)、最终用途(合同研究组织 (CRO)、制药和生物技术公司、研究中心和学术机构等) |
覆盖国家 |
德国、法国、英国、意大利、西班牙、俄罗斯、土耳其、比利时、荷兰、瑞士、欧洲其他地区 |
涵盖的市场参与者 |
市场上的一些主要参与者包括 NVIDIA Corporation、IBM Corp.、Atomwise Inc.、Microsoft、Benevolent AI、Aria Pharmaceuticals, Inc.、DEEP GENOMICS、Exscientia、Cloud、Insilico Medicine、Cyclica、NuMedii, Inc.、Envisagenics、Owkin Inc.、BERG LLC、Schrödinger, Inc.、XtalPi Inc. 和 BIOAGE Inc. 等 |
欧洲药物研发中的人工智能 (AI) 市场定义
过去几年,随着多家公司和大型研究实验室致力于完善这些技术以用于临床,人工智能引起了医疗技术从业者的关注和关注。人工智能(也称为深度学习 (DL)、机器学习 (ML) 或人工神经网络 (ANN))如何协助临床医生的首批商业化演示现已面世。这些系统可能导致临床医生工作流程发生范式转变,提高工作效率,同时提高治疗和患者吞吐量。用于药物发现的人工智能是一种使用机器模拟人类智能来解决药物开发过程中复杂挑战的技术。在临床试验过程中采用人工智能解决方案可以消除可能的障碍,缩短临床试验周期,并提高临床试验过程的生产力和准确性。因此,在药物发现过程中采用这些先进的人工智能解决方案在生命科学行业利益相关者中越来越受欢迎。在制药领域,它有助于发现新化合物、识别治疗靶点和开发定制药物。用于药物发现的人工智能平台可以证明是一种可行的选择,可以深入了解药物的发现,以治疗和尽量减少各种慢性疾病的严重程度。
欧洲人工智能(AI)药物研发市场动态
本节旨在了解市场驱动因素、优势、机遇、限制和挑战。下面将详细讨论所有这些内容:
驱动程序
- 慢性病发病率上升推动药物研发对人工智能的需求
慢性病的发病率在全球范围内迅速上升。根据美国疾病控制和预防中心(CDC)的数据,美国每10个成年人中就有6个患有慢性病。此外,CDC还强调,心脏病和糖尿病等慢性病是美国死亡的主要原因。这些数据表明,慢性病的发病率正在不断上升,有必要降低这些疾病造成的死亡率。
用于药物研发的人工智能平台已被证明是一种可行的选择,可以深入了解药物研发,以治疗和尽量减轻各种慢性疾病的严重程度。因此,这些因素有望在预测期内成为市场增长的驱动力。
- 战略合作、伙伴关系和产品发布
人工智能有潜力改变药物发现,可以快速加快研发时间,降低药物开发成本并加快药物开发速度,提高药物获批的概率。人工智能还可以提高药物再利用研究的有效性。
跨行业联盟和合作的增加推动了市场的发展。人工智能在药物发现和开发中的相关性不断提高,包括药物研究领域的人工智能技术在内的研发活动资金激增,预计将推动全球市场的增长。因此,跨行业合作和伙伴关系的增加正在推动市场的发展。
克制
- 与技术和技术限制相关的高成本
当前的医疗保健行业面临着许多复杂的挑战,例如药品和治疗费用的增加,社会需要在这一领域做出具体的重大改变。人工智能的整个成功取决于大量数据的可用性,因为这些数据将用于对系统进行的后续训练。访问来自不同数据库提供商的数据可能会给公司带来额外成本。临床试验旨在确定药物产品对特定疾病状况的安全性和有效性,需要六到七年的时间以及大量的资金投入。然而,参加这些试验的十分之一的分子只能成功获得批准,这对行业来说是一个巨大的损失。这些失败可能是由于患者选择不当、技术要求不足和基础设施薄弱造成的。因此,技术成本的增加正在成为市场增长的制约因素。
机会
-
研发投资增加
研发活动的增加和基于云的服务和应用程序的日益采用将为市场增长提供有利的机会。
经过长期的低迷期后,生物制药领域的人工智能行业继续增长。这反映在 2021 年与前几年相比,制药公司和人工智能公司之间的投资持续流动和合作数量的增加。生物制药行业的增长在很大程度上受到领先制药公司积极参与人工智能相关投资的影响。生物制药领域人工智能的科学出版物数量以及制药公司和人工智能专业知识供应商之间的研究合作正在迅速增加,然而,一些制药公司仍然对人工智能应用持批评态度。制药和医疗保健行业的机器学习和人工智能应用导致了医疗保健领域数据驱动药物发现这一新跨学科领域的形成。因此,研发活动投资的增加为市场增长提供了机会。
挑战
- 缺乏熟练的专业人员
预计熟练专业人员的短缺将阻碍市场增长。员工必须重新培训或学习新技能,才能在复杂的人工智能机器上高效工作,从而获得药物的预期效果。这一挑战阻碍了制药行业全面采用人工智能,包括缺乏操作人工智能平台的熟练人员、小型组织的预算有限、担心取代人类会导致失业、对人工智能生成的数据的怀疑以及黑箱现象(即人工智能平台如何得出结论)。技能短缺是通过人工智能发现药物的主要障碍,阻碍了公司采用基于人工智能的机器进行药物发现。
由于技能需求过高,留住和管理技能型专业人员已成为一项挑战。此外,技术进步是导致对技能型专业人员需求增加的另一个方面。迫切需要对基于人工智能技术的专业人员进行教育。缺乏训练有素、经验丰富的专业人员以及持续存在的技能差距限制了就业前景和获得优质工作的机会。因此,显然,拥有足够技能的专业人员的可用性对市场增长构成了挑战。
后新冠疫情对欧洲药物研发市场人工智能 (AI) 的影响
COVID-19 疫情对药物研发行业 AI 的扩张产生了有益影响,因为各种组织广泛使用 AI 来识别和筛选用于治疗 COVID-19 的现有药物。AI 可用于检测预防 SARS-CoV、HIV、SARS-CoV-2、流感病毒等的活性化学物质。在疫情期间,世界各地的经济体都依赖于基于 AI 的药物研发,而不是传统的疫苗检测流程,后者需要数年时间才能开发出来,而且成本同样高昂,这促进了市场的增长。
制造商正在制定各种战略决策,以在新冠疫情后实现复苏。参与者正在进行多项研发活动,以改进无线麦克风所涉及的技术。借助此,这些公司将向市场推出先进而准确的 AI 软件。
最近的发展
- 2022 年 3 月,NVIDIA 公司推出了 Clara Holoscan MGX,用于开发和部署实时 AI 应用程序。Clara Holoscan MGX 扩展了 Clara Holoscan 平台,提供一体化、医疗级参考架构以及长期软件支持,以加速医疗器械行业的创新。这将有助于该公司在医疗领域的手术、诊断和药物研发方面获得更好的 AI 性能。
- 2022 年 5 月,领先的临床阶段 AI 药物研发公司 Benevolent AI 宣布,阿斯利康已为其药物开发组合选择了特发性肺纤维化 (IPF) 的另一个新靶点,从而向 Benevolent AI 支付了一笔里程碑式付款。这是合作中利用 Benevolent 平台在特发性肺纤维化和慢性肾病两个疾病领域确定的第三个新靶点,随后由阿斯利康验证和选择进入组合。这是在最近与阿斯利康扩大合作的基础上,于 2022 年 1 月签署了两个新的疾病领域,即系统性红斑狼疮和心力衰竭的协议。这有助于该公司加强合作。
欧洲人工智能(AI)药物研发市场范围
欧洲药物研发人工智能 (AI) 市场细分为应用、技术、药物类型、产品、适应症和最终用途。细分市场之间的增长有助于您分析利基增长领域和进入市场的策略,并确定您的核心应用领域和目标市场的差异。
应用
- 新型候选药物
- 药物优化和再利用临床前测试和审批
- 药物监测
- 寻找新的疾病相关靶点和途径
- 了解疾病机制
- 汇总和综合信息
- 假设的形成与验证
- 从头药物设计
- 寻找老药的药物靶点
- 其他的
根据应用,市场细分为新型候选药物、药物优化和再利用临床前测试和批准、药物监测、寻找与新疾病相关的靶点和途径、了解疾病机制、汇总和综合信息、形成和验证假设、从头药物设计、寻找旧药的药物靶点等。
技术
- 机器学习 (ML)
- 深度学习(DL)
- 自然语言处理 (NLP)
- 其他的
根据技术,市场细分为机器学习(ML)、深度学习(DL)、自然语言处理(NLP)等。
药物类型
- 小分子
- 大分子
根据药物类型,市场分为小分子和大分子。
提供
- 软件
- 服务
根据产品类型,市场分为软件和服务。
适应症
- 免疫肿瘤学
- 神经退行性疾病
- 心血管疾病
- 代谢疾病
- 其他的
根据适应症,市场细分为免疫肿瘤学、神经退行性疾病、心血管疾病、代谢疾病等
最终用途
- 制药及生物技术公司
- 合同研究组织 (CRO)
- 研究中心和学术机构
- 其他的
根据最终用途,市场分为制药和生物技术公司、合同研究组织 (CRO)、研究中心和学术机构等。
欧洲药物研发市场中的人工智能 (AI) 区域分析/见解
对欧洲药物研发市场的人工智能 (AI) 进行了分析,并按应用、技术、药物类型、产品、适应症和最终用途提供了市场规模信息。
本市场报告涵盖的国家包括德国、法国、英国、意大利、西班牙、俄罗斯、土耳其、比利时、荷兰、瑞士和欧洲其他国家。
2022 年,由于政府资金增加和卫生保健成本。由于药物研发活动的增加和人工智能技术的进步,英国预计将实现增长。
报告的国家部分还提供了影响单个市场因素和国内市场监管变化,这些因素和变化会影响市场的当前和未来趋势。新销售、替代销售、国家人口统计、监管法案和进出口关税等数据点是用于预测单个国家市场情景的一些主要指标。此外,在对国家数据进行预测分析时,还考虑了欧洲品牌的存在和可用性以及它们因来自本地和国内品牌的激烈或稀少竞争而面临的挑战,以及销售渠道的影响。
竞争格局和欧洲人工智能(AI)药物研发市场份额分析
欧洲药物发现市场人工智能 (AI) 竞争格局按竞争对手提供详细信息。详细信息包括公司概况、公司财务状况、产生的收入、市场潜力、研发投资、新市场计划、生产基地和设施、公司优势和劣势、产品发布、产品试验渠道、产品批准、专利、产品宽度和广度、应用优势、技术生命线曲线。以上提供的数据点仅与公司对欧洲药物发现市场人工智能 (AI) 的关注有关。
市场上的一些主要参与者包括 NVIDIA Corporation、IBM Corp.、Atomwise Inc.、Microsoft、Benevolent AI、Aria Pharmaceuticals, Inc.、DEEP GENOMICS、Exscientia、Cloud、Insilico Medicine、Cyclica、NuMedii, Inc.、Envisagenics、Owkin Inc.、BERG LLC、Schrödinger, Inc.、XtalPi Inc. 和 BIOAGE Inc. 等。
SKU-