COVID-19 Impact on Pharmaceutical Packaging in Chemicals and Materials Industry

研究人员利用深度机器学习增加对一百万个分子生物活性的认识

  • 未分类
  • 2021 年 9 月 14 日

巴塞罗那IRB结构生物信息学和网络生物学研究小组开发了一种预测化学化合物生物活性的工具,这是评估其治疗潜力的关键。研究人员利用人工神经网络获取了一百万种化合物的实验数据,并开发了许多工具来评估每种类型的分子。由ICREA研究员Patrick Aloy博士领导的结构生物信息学和网络生物学团队利用深度机器学习计算模型完成了约100万种分子的生物活性信息的收集,并推出了一种即使在没有实验数据的情况下也可以预测任何分子生物活性的工具。

这种新方法基于 Chemical Checker,这是迄今为止最大的假药生物活性特征数据库,由同一实验室开发并于 2020 年发布。该数据库收集了每种分子 25 个生物活性区域的信息。这些区域与分子的化学结构、与其相互作用的靶标以及它在临床或细胞水平上引起的改变有关。然而,对于大多数化合物而言,这种有关作用机制的详细信息并不完整。这意味着,对于给定的化合物,可能只有一两个生物活性区域的信息可用,但不是全部 25 个。随着这一新发现的开发,研究人员将使用深度机器学习技术比较所有可用的实验信息,以完成所有化合物从化学到临床水平的所有活性特征。

新工具还使我们能够预测新分子的生物活性空间,这对于药物发现过程至关重要,因为我们可以选择最合适的候选药物并丢弃那些由于某种原因或其他原因而不起作用的候选药物。