光学字符识别 (OCR) 是一种成熟的数字化技术,通常用于将扫描文档中的文本转换为计算机上可搜索和编辑的形式。但它无法数字化其他文档,例如音乐手稿和其他类型的手稿。印度尼西亚雅加达的 Bina Nusantara 大学的团队开发了一种新方法,使用深度机器学习和卷积神经网络,经过训练可以识别手稿上书写的乐谱的细微差别。
该系统要求谱号、五线谱和音调都到位,但这些都可以在模板中轻松分配。在转换扫描的手稿时,它会检测五线谱上每个音符的位置来确定音高。下一步使用并行算法来检测每个音符的持续时间并确定手稿中休止符、静音和其他类似特征的位置。一旦完全数字化,使用当前软件在计算机上用所有可能的乐器声音“播放”手稿,甚至将歌词乐谱与音乐关联起来并让计算机演唱这首歌,都是小事一桩。科学家认为,一旦成熟,OMR 将在音乐表演、音乐教育和音乐手稿档案存档方面有许多应用。该团队表示,他们的方法可以让软件“应用程序”开发人员为智能手机或平板电脑编写一个程序,让任何人都可以快速扫描乐谱并对该手稿进行 OMR。