科学家们开发了一种数学模型,可以预测导致耐药性的细菌突变的数量和影响将如何影响抗生素治疗的成功。他们的模型今天发表在《e Life》杂志上,为临床环境中药物耐药性的形成提供了新的见解,并就如何制定新的治疗策略来防止这种耐药性的发生提供了建议。抗生素耐药性是一项重大的公共卫生挑战,它是由细菌细胞的变化引起的,这些变化使它们能够在旨在杀死它们的药物中存活下来。耐药性通常源于感染治疗过程中出现的细菌新突变。了解这种耐药性如何在细菌群体中形成和传播很重要,这反过来可以防止治疗失败。
第一作者、瑞士苏黎世联邦理工学院博士后 Claudia Igler 解释说,数学模型是检查药物治疗结果和评估抗生素耐药性发展风险的重要工具。这些模型通常研究导致完全耐药性的单一突变,但可能存在多个突变会增加细菌的抗生素耐药性。在他们的研究中,Igler 和他的团队收集了实验证据,证明耐药性的发展遵循这两种模式:单一突变和多个突变,并利用这些信息创建了一个明智的建模框架,该框架说明了细菌细胞对体内预测的药物类型和治疗策略的反应是耐药性还是多级耐药性。
他们研究了当考虑多个突变步骤以及使用多少种不同的细菌菌株(突变)时,治疗失败的风险如何变化。研究小组发现,当细菌需要超过两个突变时,耐药性的产生会受到相当大的限制。此外,这种限制的程度,以及治疗失败的可能性,在很大程度上取决于药物类型和给药途径的组合,例如口服或静脉输液。
这项研究可以说是朝着了解临床相关治疗环境中抗生素耐药性发展迈出的决定性一步。它强调了测量突变引起的抗生素耐药性水平以支持有效的抗菌治疗策略的重要性。