概述

通过使用算法而非人类来创建学习模型,自动化机器学习 (AML) 有助于减少大量重复且繁琐的过程,包括参数选择和数据清理。由于机器学习是数据科学的一个组成部分,制定和测试假设的过程将继续进行。autoML 的目标是自动化这些过程,以在可访问的特征、算法和超参数范围内找到最佳算法。预计 autoML 将使 ML 工作流程对重复过程的智能自动化变得更加容易。这使得高价值资源可以从单调的工作转移到分析和评估最有价值的模型。因此,基于它们生成模型和解决方案所需的时间将大大减少。

尽管 AutoML 系统能够以足够快的速度生成预测模型,以实现接近最佳的性能,但其应用范围仍然有限,而且其全部前景仍未实现。尽管 AutoML 在特征工程和数据准备方面越来越普遍,但仍有一些高度依赖领域的应用程序,在这些应用程序中,它更像是一门艺术而不是工程。AutoML 将在加速采用基于 ML 的解决方案方面发挥重要作用,因为它是一个正在取得巨大进展的活跃研究课题(有多个参与者正在解决自动化整个模型开发过程的现有挑战)。

客户挑战

客户希望分析与自动化机器学习 (AML) 相关的机遇和挑战。客户的主要目标是使其解决方案产品与即将到来的客户需求保持一致,以实现更好的决策、降低成本、提高效率、创新并通过保持技术进步的前沿来获得竞争优势。

以下是客户提出的要求:

  • 区域和国家层面的总目标市场规模 (TAM) 和同比增长率
  • 当前和未来的技术趋势以及实施过程中面临的挑战
  • 对领先企业和新兴企业的比较分析,包括市场份额、可追踪收入、战略举措、技术采用、供应商选择标准等
  • 不同参与者的投资策略和融资
  • 市场机会和吸引力评估
  • 自动化机器学习 (AML) 的新兴应用
  • 国家层面的监管要求和合规性

DBMR 方法/研究方法

DBMR 对市场格局进行了全面分析,确定了相关趋势并提供了可操作的见解来指导客户。我们遵循三脚架模型来分析和验证数据,以根据客户要求提供有价值的见解。DBMR 用于分析和评估自动化机器学习 (AML) 的方法或研究方法如下所述:

我们的方法涉及使用主要和次要研究方法来估计、分析和验证数据。

DBMR 针对自上而下和自下而上的数据分析和验证方法进行了二手资料和一手资料研究。该方法用于获取全球、区域和国家层面上每个提及部分的定性和定量数据。

  • 二手资料研究包括不同政府协会发布的数据、认证出版物、投资者介绍、美国证券交易委员会提交的年度报告、公司网站、期刊、白皮书以及知名作者和其他人撰写的文章
  • 初步研究包括通过电话、LinkedIn、电子邮件等方式对各种主要受访者进行深入访谈,采访对象包括关键行业参与者、主题专家 (SME)、主要市场参与者的 C 级高管和行业顾问,以验证定性和定量信息。这基本上是由我们专门的主要团队和在当地站点的个人(第三方)执行的。此外,我们甚至准备了一份详尽的问卷和讨论指南,其中包含结构化和非结构化数据点,以便进行基于讨论的方法

遵循上述方法来分析客户需求:

  • 市场规模是通过自上而下和自下而上的方法得出的
  • 竞争分析:基于可追踪收入、解决方案产品、优势和劣势、市场份额、地理范围、战略举措、投资和资金等进行公司分析,以确定关键供应商、潜在供应商、市场颠覆者和利基参与者,以获得竞争优势
  • 还研究了影响整个市场的驱动因素、限制因素、机遇和挑战等因素
  • 兼容性和复杂性问题、替代技术的存在、监管环境和合作、COVID-19、俄乌战争等内外部因素对需求和供应方的影响
  • 我们还对监管环境进行了全面评估,并深入研究以分析该市场的潜在客户。此外,与客户利益相关者的密切合作有助于我们确定该市场可以带来重大价值的特定应用或用例

因此,通过遵循上述方法,可以向客户提供相应的市场洞察。

商务解决方案

以下是在分析自动化机器学习(AML)解决方案市场时提供的解决方案:

  • 提供了全球、区域和国家层面的自动机器学习 (AML) 解决方案的市场规模和复合年增长率,以了解每个细分市场的市场潜力
  • 在国家层面上,对自动化机器学习 (AML) 及其实施趋势(例如数据规范化、数据清理和数据转换)进行了详细分析。AML 将有助于降低成本、加快结果(数据分析)和决策、简化运营并提高执行力和增强竞争优势。
  • 从公司概况、定位与应用网格、公司格局、SWOT、战略举措等方面对公司进行了比较分析,以确定市场竞争并获得竞争优势。
  • 会议还提供了有关技术进步的见解,包括基于云计算、人工智能、机器人技术等,以及影响整个市场的其他市场机遇和挑战。会议见证了云模型比本地模型更易于访问、更具可扩展性和灵活性。此外,这是一种具有成本效益的模型,因为它提供按需付费模式,因此对每个组织尤其是中小型企业都非常有帮助。
  • 在区域分布上,北美占据了最大的市场份额,这得益于领先公司的存在,这些公司满足了包括 BFSI、医疗保健和零售等在内的多个终端用户行业对机器学习部署的需求。

商业冲击

客户对市场竞争力、即将实施的技术以及战略步骤/计划有了清晰的了解,这些将有助于他们满足不同国家/地区的知名最终用户的需求。该公司通过其最新的自动化产品提高了转化率,该产品在买家旅程的不同阶段提供了最有效的解决方案。

结论

Data Bridge Market Research 提供了与自动化机器学习 (AML) 市场相关的深入见解,以满足每项需求。除此之外,报告的事实和综合信息将帮助客户评估公司在技术渗透方面的增长,并可进一步用于决策和未来规划。除此之外,客户甚至可以从报告信息中获取/捕捉商机。

立即访问

联系我们