概述
通过使用算法而非人类来创建学习模型,自动化机器学习 (AML) 有助于减少大量重复且繁琐的过程,包括参数选择和数据清理。由于机器学习是数据科学的一个组成部分,制定和测试假设的过程将继续进行。autoML 的目标是自动化这些过程,以在可访问的特征、算法和超参数范围内找到最佳算法。预计 autoML 将使 ML 工作流程对重复过程的智能自动化变得更加容易。这使得高价值资源可以从单调的工作转移到分析和评估最有价值的模型。因此,基于它们生成模型和解决方案所需的时间将大大减少。
尽管 AutoML 系统能够以足够快的速度生成预测模型,以实现接近最佳的性能,但其应用范围仍然有限,而且其全部前景仍未实现。尽管 AutoML 在特征工程和数据准备方面越来越普遍,但仍有一些高度依赖领域的应用程序,在这些应用程序中,它更像是一门艺术而不是工程。AutoML 将在加速采用基于 ML 的解决方案方面发挥重要作用,因为它是一个正在取得巨大进展的活跃研究课题(有多个参与者正在解决自动化整个模型开发过程的现有挑战)。
客户挑战
客户希望分析与自动化机器学习 (AML) 相关的机遇和挑战。客户的主要目标是使其解决方案产品与即将到来的客户需求保持一致,以实现更好的决策、降低成本、提高效率、创新并通过保持技术进步的前沿来获得竞争优势。
以下是客户提出的要求:
DBMR 方法/研究方法
DBMR 对市场格局进行了全面分析,确定了相关趋势并提供了可操作的见解来指导客户。我们遵循三脚架模型来分析和验证数据,以根据客户要求提供有价值的见解。DBMR 用于分析和评估自动化机器学习 (AML) 的方法或研究方法如下所述:
我们的方法涉及使用主要和次要研究方法来估计、分析和验证数据。
DBMR 针对自上而下和自下而上的数据分析和验证方法进行了二手资料和一手资料研究。该方法用于获取全球、区域和国家层面上每个提及部分的定性和定量数据。
遵循上述方法来分析客户需求:
因此,通过遵循上述方法,可以向客户提供相应的市场洞察。
商务解决方案
以下是在分析自动化机器学习(AML)解决方案市场时提供的解决方案:
商业冲击
客户对市场竞争力、即将实施的技术以及战略步骤/计划有了清晰的了解,这些将有助于他们满足不同国家/地区的知名最终用户的需求。该公司通过其最新的自动化产品提高了转化率,该产品在买家旅程的不同阶段提供了最有效的解决方案。
结论
Data Bridge Market Research 提供了与自动化机器学习 (AML) 市场相关的深入见解,以满足每项需求。除此之外,报告的事实和综合信息将帮助客户评估公司在技术渗透方面的增长,并可进一步用于决策和未来规划。除此之外,客户甚至可以从报告信息中获取/捕捉商机。