文章

2022 年 12 月 14 日

人工智能在癌症诊断中的应用

使用数据来确定行动方向或做出预测的算法或计算机程序被称为人工智能。为了让计算机检查数据并做出判断,科学家可能会制定一套规则或指令供计算机遵循。机器学习是另一种人工智能技术,系统会训练自己如何评估和理解数据。因此,机器学习算法可能会发现人眼或大脑难以识别的模式。此外,随着这些算法接触到更多新信息,它们在学习和解释数据方面会变得更好。

Data Bridge Market Research 分析称,在 2022-2029 年的预测期内,医疗保健市场中的人工智能预计将实现 51.37% 的复合年增长率。这意味着到 2029 年,市场价值将从 2021 年的 63.5 亿美元飙升至 1752.2 亿美元。2019 年 1 月,英国达特福德和格雷夫舍姆 NHS 信托基金开发了一种人工智能驱动的可穿戴技术,用于患者出院时的监测。2019 年 10 月,care.ai 和 NVIDIA 宣布合作,利用 NVIDIA 的平台在医疗保健领域提供人工智能驱动的自主患者监测。

要了解有关该研究的更多信息,请访问:https://www.databridgemarketresearch.com/zh/reports/global-artificial-intelligence-in-healthcare-market

深度学习是机器学习的一个子集,研究人员也将其应用于癌症成像应用。深度学习是指以类似于人脑的方式对数据进行分类的算法。深度学习技术使用人工神经网络来模拟我们的脑细胞如何接收、解释和响应来自身体其他部位的信息。为了确定肿块是否是癌症,医生会进行癌症成像测试。如果是癌症,它发展的速度有多快?扩散程度如何?接受治疗后康复了吗?研究表明,人工智能可以提高医疗专业人员的反应速度、准确性和可靠性。人工智能在肿瘤学中的应用可以从不同的阶段来理解:

AI in Oncology

图1:人工智能在肿瘤学中的作用

  • 早期发现癌症- 人们会定期使用乳房 X 线照相检查和巴氏涂片检查等程序来检查癌症迹象或可能发展成癌症的细胞。目的是在癌症扩散甚至生长之前尽早发现和治疗。为了帮助进行乳腺癌筛查测试和其他类型的癌症筛查测试,科学家们创造了人工智能技术。在过去的 20 年里,基于人工智能的计算机算法帮助医生解读乳房 X 线照相,但这一研究领域正在迅速发展。一个团队开发了一个人工智能系统,帮助决定女性应该多久检查一次乳腺癌。该算法根据乳房 X 线照相的结果预测一个人在未来五年内患上乳腺癌的可能性。该模型在测试中的表现优于目前的乳腺癌风险预测方法。NCI 的研究人员开发并测试了一种可以识别需要切除或治疗的宫颈癌前病变的深度学习算法。在一些资源匮乏的情况下,卫生专业人员会用微型摄像头检查宫颈,以检查宫颈癌前病变。这种方法简单直接,可持续使用;然而,它不是很精确或可靠。临床研究已证明,多项人工智能技术可以提高腺瘤(一种可能导致结肠癌的癌前病变)的诊断率。一些专家担心,这些人工智能技术可能会迫使许多人接受不必要的治疗和额外检查,因为只有一小部分腺瘤会发展成癌症。
  • 癌症检测和诊断- AI 能够帮助在已经出现癌症迹象的人群中更早地诊断出癌症。例如,由 Turkbey 博士及其在 NCI 癌症研究中心的同事创建的 AI 模型可能使放射科医生更容易在一种相对较新的前列腺 MRI 扫描(称为多参数 MRI)上识别可能具有侵袭性的前列腺癌。Turkbey 博士表示,NCI 团队开发的 AI 模型“可以最大限度地降低错误率,并使执业放射科医生的 [学习] 曲线更容易”。他说,对于正在学习使用多参数 MRI 的经验不足的放射科医生来说,AI 模型可能充当“虚拟专家”。许多深度学习 AI 模型已被开发出来,以帮助临床医生在 CT 扫描中检测肺癌。有相当一部分假阳性检测结果表明一个人患有肺癌,但实际上并没有,因为肺部的一些非癌性异常在 CT 扫描中可能看起来与癌症非常相似。从理论上讲,人工智能可以通过更好地区分 CT 图像上的肺癌和非癌性病变来降低假阳性率,并让一些患者免于不必要的压力、后续检测和手术。一组研究人员创建了一种深度学习算法来发现肺癌并避免其他类似癌症的病变。
  • 癌症治疗选择- 医生还使用影像学检查来收集有关癌症的关键数据,例如癌症发展的速度、是否已经扩散以及治疗后是否有可能复发。医生可以使用这些信息来确定患者的最佳治疗方案。大量研究表明,人工智能可能能够比人类更准确、更全面地从影像扫描中提取预后数据。例如,Harmon 博士及其同事开发的深度学习模型可以预测膀胱癌患者除手术外还需要其他治疗的风险。据医学专家称,大约 50% 的膀胱肌肉肿瘤患者(肌肉浸润性膀胱癌)的癌细胞簇已经转移到膀胱外,这些癌细胞簇太小,无法用常规方法检测到。如果不消除这些未被发现的细胞,它们可以在手术后继续繁殖,导致复发。这些小簇可以通过化疗消除,从而阻止癌症在手术后复发。然而,正如临床试验所证明的那样,Harmon 博士表示,确定患者是否也需要化疗可能具有挑战性。该模型通过分析原始肿瘤组织的数字图像来确定周围淋巴结中是否存在微观癌变簇。在 2020 年发表的一项研究中,深度学习模型的表现优于传统的预测膀胱癌是否扩散的方法,该方法基于包括患者年龄和特定肿瘤特征在内的几个变量。人们越来越多地研究患者癌症的基因组成,以确定最佳治疗方案。中国研究人员开发了一种深度学习算法,可以根据组织照片预测肝癌组织中是否存在重要的基因突变,而病理学家仅通过查看图像是无法做到这一点的。创建该算法的科学家不知道它如何确定肿瘤中存在哪些基因变化,这使得他们的工具成为以令人惊讶的方式运行的人工智能的一个例子。
  • 医学成像中的人工智能 癌症预测可以从人工智能和机器学习中受益。人工智能能够提前发现已经扩散的恶性肿瘤和高风险人群。这使医疗专业人员能够密切监测这些患者并在必要时迅速采取行动。麻省理工学院的一位名叫 Regina Barzilay 的计算机科学家对测试人工智能 (AI) 进行癌症预测很感兴趣。麻省理工学院的团队研究了人工智能在出现任何明显症状之前识别出有患乳腺癌风险的女性的潜力。为了找出哪些患者患有癌症,她在四年内收集了超过 40,000 名女性的乳房 X 光检查结果,总计约 89,000 张,并将扫描结果与国家肿瘤登记处进行了比较。然后,Regina 使用这些照片中的一些照片来训练机器学习 (ML) 算法(一种人工智能),然后使用该算法生成预测。该算法正确地将 30% 的未来乳腺癌患者识别为属于高风险人群。人工智能在医学成像领域有多种用途。识别和分类恶性肿瘤是最明显的用途之一。 2021 年 9 月,FDA 批准了一款人工智能驱动的癌症病理学工具 Paige Prostate。这款人工智能工具与 FullFocus 数字病理学查看器配合使用,有助于检测前列腺癌。FDA 审查了一项临床研究的数据,其中 16 名病理学家评估了 527 张前列腺活检照片,以​​寻找癌症指标,这是获得批准的先决条件。
  • 血液检测中的人工智能 借助人工智能增强的血液检测可以帮助医生更准确地检测癌症。根据《Cancer Cell International》的一项研究,血液分析(使用人工智能算法分析血浆 ctDNA 和 miRNA 谱)是一种比传统 CT 扫描更有效的发现和监测癌症的方法。约翰霍普金斯大学金梅尔癌症中心的研究人员创造了一种基于人工智能的尖端技术,通过血液检测来检测肺癌。研究人员使用了来自 796 名美国、丹麦和荷兰参与者的血液样本来测试这种方法。研究人员将这种血液测试与患者的蛋白质生物标志物、临床风险因素和 CT 扫描结果配对。结果,他们正确地识别出了 91% 的早期疾病患者和 96% 的晚期癌症患者。
  • 免疫疗法中的人工智能 人工智能在免疫疗法中的主要作用是评估各种疗法的结果并协助医生修改处方。MD 安德森癌症中心和 UT 西南医学中心的研究团队开发了一种人工智能方法,用于确定新抗原(癌细胞基因组发生突变时产生的肽)是否能被患者的免疫系统识别。此类人工智能算法可以预测癌细胞对免疫疗法的反应。我们免疫系统中的 T 细胞总是在寻找癌症和其他侵袭性生物的迹象。当它们识别新抗原时,这些细胞会相互结合。然而,一些新抗原无法被识别,从而促进了癌症的扩散。这些信息将使我们能够预测患者对免疫疗法的反应,并创建个性化的基于 T 细胞的疗法和癌症疫苗。

预计在 2022 年至 2029 年的预测期内,免疫肿瘤学 (IO) 市场将以 8.90% 的速度增长。免疫肿瘤学 (IO) 市场根据类型、目标、适应症、最终用户和分销渠道进行细分。预计亚太地区癌症免疫疗法采用率将大幅增长。此外,预计疾病发病率上升以及死亡率上升将进一步推动该地区未来几年免疫肿瘤学 (IO) 市场的增长。

要了解有关该研究的更多信息,请访问:https://www.databridgemarketresearch.com/zh/reports/global-immuno-oncology-market

  • 药物研发- 同一种药物对不同形式的癌症可能有不同的反应。人工智能能够预测各种药物对恶性细胞的影响。这些信息有助于开发新的抗癌药物并确定使用时间。例如,根据癌细胞的突变状态,一个研究小组创建了一种随机森林算法,可以预测抗癌药物的作用。

人工智能在肿瘤学中的优势

人工智能在医疗领域通常具有很多优势。以下是在癌症检测和治疗中使用人工智能的三大优势:

AI in Oncology

图 2:人工智能在肿瘤学领域的优势

  • 个性化医疗和治疗 - 大数据和人工智能使医疗专业人员能够检查有关患者和癌细胞的各种数据,以制定个性化治疗方案。这种疗法的副作用会更小。对健康细胞的伤害较小,但对癌细胞的影响更大。人工智能帮助放射科医生确定哪些肿瘤和异常是癌症,需要真正的医疗干预。根据《美国国家癌症研究所杂志》的一项研究,人工智能算法可以识别宫颈图片中的癌前病变,并将其与其他异常区分开来,从而避免患者因小问题而接受不必要的治疗。
  • 消除侵入性手术 有时,肿瘤的良性性质只有在切除手术后才会被发现,这样就可以完全避免手术。在癌症检测过程中,如果人工智能能够提供帮助,这种情况可以大大减少。例如,一项研究发现,人工智能可以减少 30.6% 的保乳手术。图像引导针刺活检可用于训练机器学习算法以识别恶性肿瘤。研究人员使用随机森林 ML 系统评估了 335 名潜在癌症患者,发现该系统阻止了三分之一不必要的手术。
  • 减少误报和漏报 用于癌症检测的人工智能将提高诊断的准确性,减少假阳性和假阴性。乳腺癌检测研究为我们提供了证据。接受医生检查的十分之一的女性患者乳房 X 光检查结果为假阳性,迫使她们接受压力很大的程序和不必要的侵入性检查。谷歌的研究团队开发了一款软件,利用人工智能将乳房 X 光检查的假阳性和假阴性读数分别降低 6% 和 9%。另一组研究人员创建了一种用于识别乳腺癌的人工智能算法。该算法帮助放射科医生在检查过程中将假阳性率降低了 37.3%。

肿瘤学人工智能面临的挑战和未来展望

复杂的非线性相互作用、容错、同步分布式处理和学习都是人工智能可以轻松处理的任务。这得益于其自适应、同时处理定量和定性信息以及来自众多领域的大量临床研究的验证结果。毫无疑问,人工智能以多种方式应用于临床护理。它充分利用了临床变异的不同方面,同时也解决了专家系统目前缺乏普遍性和客观性的问题。医院可以使用人工智能培训初级医生进行临床诊断和决策。越来越多的学术论文讨论了基于机器学习的计算机系统卓越的诊断和预后能力。

为了确保人工智能技术在癌症诊断和预后中的应用,它面临着一些必须克服的重大困难。例如,无法使用来自医学成像的原始输入数据。处理和提取图像数据中的信息至关重要。需要进一步研究来解释神经网络模型中权重系数的结果,这些结果已经过验证和计算,并且由于技术发展和广泛采用而具有足够的置信区间。随着对 ANN 的研究越来越多,临床医学领域可能会更频繁地使用 ANN。尽管人们承认人工智能在该行业的价值,但计算机科学家和医疗专业人员必须共同努力,确保跨学科工作人员得到培训和协作。然后,医疗专业人员可以以经济高效和实用的方式利用这项技术的潜力。隐私和数据安全保障是与人工智能在医学领域的未来相关的一个主要问题。尽管近年来“大数据”和基于 ML 的解决方案引起了很多兴奋,但目前很少有案例表明人工智能如何影响临床实践。

Data Bridge Market Research 分析,预计到 2029 年,癌症诊断市场将达到 282.1 亿美元的价值,预测期内的复合年增长率为 7.29%。癌症病例的增加为市场提供了增长机会。癌症是世界第二大死亡原因,到 2020 年将导致 1000 万人死亡。癌症约占全球所有死亡人数的六分之一(来源:世界卫生组织)。2020 年,报告了 1930 万例新发癌症病例,预计到 2040 年这一数字将上升到 3020 万例。癌症发病率的上升可以归因于老年人口和总人口的增长。

要了解有关该研究的更多信息,请访问:https://www.databridgemarketresearch.com/zh/reports/global-cancer-diagnostics-market


客户证言