文章

2022 年 12 月 14 日

人工智能带来能源行业变革

  • 最近的一项研究表明,欧洲是能源相关创新最活跃的地区之一。
  • 转向低碳能源的关键力量之一是电动汽车。

Data Bridge Market Research 分析,2021 年电动汽车充电站市场价值为 69.7 亿美元,预计到 2029 年将达到 1675.2 亿美元,在 2022 年至 2029 年的预测期内复合年增长率为 48.80%。电动汽车的日益普及和使用凸显了充电基础设施建设的必要性。例如,中国、美国和德国在电动汽车 (EV) 充电基础设施以及更快、更高效的充电技术研发上投入巨资。ABB(瑞士)、壳牌公司(英国)、ChargePoint(美国)、特斯拉(美国)、比亚迪(中国)、bp Chargemaster(英国)、Webasto Thermo & Comfort(德国)、施耐德电气(法国)、Blink Charging Co.(美国)、雷诺集团(法国)、Phihong USA Corp.(美国)等是该市场的一些主要参与者。

要了解有关该研究的更多信息,请访问: https://www.databridgemarketresearch.com/zh/reports/global-electric-vehicle-charging-stations-market

解决气候灾难所造成的问题的关键步骤之一是向低碳能源 (LCE) 过渡。如果不降低排放量,不扩大使用清洁能源,《巴黎气候协定》的温度限制可能会被超越。根据欧洲专利局 (EPO) 和国际能源署 (IEA) 发布的第二份关于支持向绿色能源转型所需技术发展的研究,情况确实如此。EPO 和 IEA 仔细研究了国际专利数据库,以寻找创新模式,统计了在多个办公室提交专利的案例,这些专利被称为国际专利家族,以衡量迄今为止取得的进展 (IPF)。根据该论文,“这些专利数据提供了必将影响经济的技术进步的早期指标,因此可以说明创新如何推动能源转型。”

Growth of Low Carbon Energy

图1:全球低碳能源增长

来源:欧洲专利局

2014 年至 2016 年间,绿色能源 IPF 的扩张速度有所放缓。但根据 EPO/IEA 报告,这一数字再次上升。此外,LCE 相关专利数量的增加与化石燃料使用量的减少相吻合。

人工智能 (AI) 正在彻底改变能源和公用事业行业,就像它在每个行业中所做的那样。为了确保在需要的时间和地点以最少的浪费提供电力,它被用来估计需求并控制资源的分配。这对于可再生能源行业至关重要,因为可再生能源通常不适合长期储存,必须在生产后尽快使用。据世界经济论坛称,人工智能对于全球转向可再生能源至关重要。更精确的供需预测将提高效率。

分散式发电和配电模式也在取代集中式模式。在这些模式中,更多的电力由本地化、较小的电网(如太阳能发电场)生产,而协调这些网络的整合需要复杂的人工智能算法。该计划是建立一个“智能协调层”,位于电力基础设施和人们和物品使用电力的建筑物之间。

2022 年,我们可以期待初创公司以新的方式利用人工智能带来更多创新。例如,德国的 Likewatt 开发了 Optiwize,这是一项估算二氧化碳排放量和电力消耗的服务,可帮助消费者实时监控电力消耗的影响,并对能源供应做出更明智的选择。为了提高可再生能源的生产效率,其他企业正在开发预测性维护技术。一个更加一体化和电气化的能源系统,电力、交通、工业和建筑部门之间的互动增加,是世界能源系统脱碳努力的结果。电力部门的高度分散化也是能源供应脱碳努力的结果。为了管理这个日益复杂的系统并对其进行优化以实现最低的温室气体排放,它将需要包括消费者在内的所有部门参与者更高水平的合作和适应性。

人工智能的潜在应用范围广泛,从优化和有效地将可变可再生能源整合到电网中,到支持主动和自主的电力分配系统,再到为需求方灵活性开辟新的收入来源,人工智能在支持和加速可靠且成本最低的能源转型方面具有巨大潜力。寻找支撑最新可持续能源和存储技术的高性能材料可能会从使用人工智能中受益匪浅。然而,尽管人工智能潜力巨大,但它偶尔也会用于能源领域,主要是用于主动资产维护的实验计划。人工智能虽然有效,但其加速全球能源转型的潜力比现在认识到的要大得多。以下是关于人工智能将如何通过广泛的应用影响能源行业的讨论:

Top Applications of AI in the Energy Industry

图 2:人工智能在能源行业的顶级应用

  • 智能电网- 为了实现“智能化”,电网现在可以连接到传感器、数据分析工具、能源存储系统、能源管理平台和其他能源技术。能源供应商可以使用智能电网从每个电网设备收集能源消耗数据,并为客户创建节能项目。此外,它还可以近乎实时地监控能源公司的能源使用和流动情况。然后,借助可在高峰时段切断能源的自动需求响应系统,能源公司可以最大限度地减少能源使用。因此,家庭和能源供应商都可以节省能源。微电网是一种可以独立于主电网运行的小型电网。微电网控制系统使用人工智能和机器学习来优化能源使用和控制能源流动。由于它们可以在紧急情况下提供能源安全,并且比传统能源网络更易于将可再生能源整合到电网中,因此微电网越来越受欢迎。
  • 电网安全与管理- 人工智能用于管理建筑物、企业、蓄电池、可再生能源、微电网和主电网内部和之间的能源流动,以优化能源系统。这减少了能源浪费,同时提高了消费者对能源使用的认识。尽管风能和太阳能等间歇性可再生能源越来越受欢迎。因此,这些能源并不总是在需要时可用。由于电网必须在产生能源时实时管理能源,因此这是一个挑战。能源公司可以预测何时有可再生电力可用,并在人工智能和机器学习的帮助下相应地管理电网。机器人还用于能源安装、电网维护以及跟踪能源生产和消耗。为了修复管道、风力涡轮机和其他能源基础设施,可以使用机器人。能源公司可以通过自动化这些流程进一步提高效率并降低成本。电网等复杂系统很容易受到黑客攻击。通过在网络攻击发生之前阻止它们,人工智能和机器学习可以提高电力基础设施的安全性。为此,数据分析将用于查找能源数据中可能预示网络攻击的趋势。一旦检测到网络攻击,人工智能和机器学习可用于做出反应。
  • 电力盗窃检测- 电力盗窃和欺诈每年给能源和公用事业部门造成高达 960 亿美元的损失,仅在美国就造成高达 60 亿美元的损失。非法从电网中获取能源被称为电力盗窃。故意篡改能源数据或能源使用情况被称为能源欺诈。能源公司可以使用人工智能和机器学习自动发现并标记这些异常情况以进行解决。能源公司可以这样做来保护他们的资源,减少能源浪费并节省资金。
  • 改进和提高产量 能源行业也在使用人工智能和机器学习来提高产量。例如,石油和天然气公司使用机器学习算法来更好地选址油井并提高产量。这些企业可以通过分析从地震勘测和其他来源获得的数据来更有效地决定在哪里钻探石油和天然气。这将提高能源效率,并带来更清洁、更有效的能源系统,使能源供应商更容易管理。
  • 能源存储和预测分析- 到 2030 年,能源存储市场预计将增长 20 倍。智能能源存储技术可以纳入电网,以提高能源管理的效率。电力企业现在可以通过使用能源存储来构建虚拟发电厂,即使其当前的能源供应不足,也可以在需要时提供能源。这减少了能源公司建造全新发电厂的需要。可以使用预测分析来预测未来能源需求的变化。然后可以构建适当的基础设施,以规划未来并满足能源需求。能源企业还可以通过采用预测分析来预测机器或设备最有可能发生故障的时间。这不仅有助于防止意外停电,而且还可以帮助企业节省资金,使他们能够为更换昂贵且必要的能源资产做好准备,并避免不可预见的维护任务。
  • 客户参与- 能源行业开始采用人工智能和机器学习来与客户互动。能源公司可以利用人工智能和机器学习为客户提供定制化的信息。这需要分析客户数据以了解他们的能源使用情况,然后为他们提供如何改变使用习惯以减少能源消耗的信息。
  • 交易能源- 由于必须立即提供能源,能源交易与其他商品不同。能源交易商因此面临挑战,但同时也存在机会,因为能源市场正变得更加流动。通过预测能源需求并让交易商获取实时价格数据,可以利用人工智能和机器学习来提高能源交易市场的效率。然后,能源交易商可以利用这些信息做出更明智的选择,决定何时买卖能源。电力购买协议 (PPA) 是能源购买者和销售者之间的金融合同,它是使用区块链技术开发的。由于区块链技术,这些合同更加有效,因为它可以加快交易速度,使用成本低于传统的 PPA 平台,并且基于一个非常安全的平台。

预计可再生能源连接器市场在 2021 年至 2028 年的预测期内将以 6.10% 的速度增长。Data Bridge 市场研究关于可再生能源连接器市场的报告提供了有关可再生能源日益普及等因素的分析和见解。在上述预测期内,高昂的安装成本和自然资源的枯竭成为可再生能源连接器的市场制约因素。在上述预测期内,全球变暖加剧和人口快速增长将成为可再生能源连接器市场增长的最大挑战。可再生能源连接器市场根据类型、能源来源、应用和最终用户进行细分。由于该地区能源改革不断加强以及分销渠道数量不断增加,亚太地区将主导可再生能源连接器市场,而由于优惠政策的盛行和可再生能源组合标准的不断提高,北美预计将在 2021-2028 年的预测期内实现增长。

要了解有关该研究的更多信息,请访问: https://www.databridgemarketresearch.com/zh/reports/global-renewable-energy-connector-market

人工智能将如何加速能源转型步伐?

IPCC 的新评估明确指出,迫切需要采取更多行动,以防止灾难性的长期气候影响。化石燃料仍然提供全球 80% 以上的能源,因此任何举措都必须以能源部门为中心。幸运的是,能源系统已经在发生变化;由于成本下降和投资者兴趣上升,可再生能源生产正在迅速扩大。然而,时间不多了,整个能源系统脱碳的规模和成本仍然巨大。到目前为止,能源行业的大部分转型努力都集中在硬件上:新的低碳基础设施将取代传统的碳密集型系统。另一个重要的转变工具是下一代数字技术,尤其是人工智能,但受到的关注和资金很少(AI)。这些强大的技术有可能通过比新硬件解决方案更快地大规模采用来加速能源转型。三大趋势推动了人工智能加速能源转型的潜力:

  • 由于公众对迅速减少二氧化碳排放的压力不断增加,历史性的脱碳进程才刚刚在能源密集型行业(包括电力、交通、重工业和建筑)开始。这些转变范围巨大。据彭博新能源财经称,仅在能源领域,到 2050 年实现净零排放就需要 92 万亿至 173 万亿美元的基础设施投资。因此,即使清洁能源和低碳工业灵活性、效率或产能略有提高,也能带来数万亿美元的价值和节约。
  • 随着电力支持越来越多的行业和应用,电力行业正在发展成为世界能源供应的主要支柱。为了确保电网能够安全可靠地管理,增加可再生能源的部署将意味着更多的电力将由零星能源(如太阳能和风能)供应,这增加了预测、协调和灵活消费的必要性。
  • 分布式发电、分布式存储和需求响应能力的提高是向低碳能源系统的转变所驱动的。这些能力必须通过更加网络化、交易性更强的电网进行协调和整合。

能源系统和能源密集型行业在应对这些趋势时面临着巨大的战略和运营障碍。通过在能源的产生、传输和使用过程中建立智能协调层,人工智能可以帮助能源系统利益相关者识别数据中的模式和见解、从经验中学习并随着时间的推移提高系统性能,以及预测和模拟复杂、多变量情况的潜在结果。能源转型的多个领域已经从人工智能中获得了切实的好处,包括预测可再生能源、电网运营和优化、分布式能源资产和需求侧管理协调以及材料创新和发现。尽管人工智能在能源领域的应用迄今为止已显示出良好的前景,但并没有太多的创新或广泛的接受。这为我们加速向我们需要的未来能源系统的过渡提供了一个绝佳的机会——一个零排放、极其高效和互联的能源系统。人工智能加速全球能源转型的能力比以前想象的要大得多,但只有增加全行业的人工智能创新、采用和协作,才能实现这一潜力。

人工智能如何成为可再生能源电网弹性的关键?

  • 为了在全球转向可再生能源的过程中管理分散的电网,需要人工智能 (AI) 技术
  • 人工智能可以优化能源使用和存储,以降低成本并实时平衡电力供需需求
  • 需要技术治理来确保电力供应的弹性,促进创新,并实现电力获取的民主化

为了利用过去的技术解决当今的挑战,有人呼吁政府在电网基础设施上投入资金,对集中供电的长输电线路进行现代化改造。一种更优越、更先进的替代品——人工智能 (AI) 已经存在,它利用分布式可再生能源。因此,人工智能在两个方面是可再生能源推广的关键:

AI's Assistance in Promoting Renewable Energy

图3:人工智能助力可再生能源

  • 可再生能源的复杂性增加 随着世界电气化程度的提高,分布式可再生能源将产生更多的能源。想想电池、私人太阳能电池板、风力发电场和微电网。即使它们有利于可持续发展,它们也会使全球能源基础设施复杂化。由于电动汽车的普及、供暖系统的电气化以及风力涡轮机和太阳能电池板等分布式能源资源 (DER) 的普及,在未来 10 到 15 年内,必须采取微妙的平衡措施来平衡供需,而不会让电网陷入瘫痪。以澳大利亚为例。到 2030 年和 2050 年,预计该国 30% 和 60% 的住宅、商业和工业建筑将使用太阳能。随着越来越多的商业、政府和住宅消费者使用太阳能电池板生产自己的能源、将其存储在电池中供电动汽车使用或将其返回电网,类似的情况正在世界各地发生。我们的预测显示,到 2030 年,欧洲电网中的储能设备数量将达到 8900 万台,高于目前估计的 3600 万台(见下图)。如果数以百万计的独立设备发布和下载电力,电网可能会变得混乱。换句话说,公用事业公司将需要改变其商业模式,因为对单一公用事业公司生产和传输电力的依赖正在减少。很快,它们将不再是唯一的能源来源;相反,它们需要通过从各种来源和存储系统传输电子来保持电网平衡,从而高效地将能源供应到需要的地方。
  • 人工智能平衡数百万个电网 分布式能源可以使用人工智能软件将其产生的任何多余电力传输到电网,公用事业可以将这些电力输送到需要的地方。与能源存储类似,当家庭、办公室、汽车和其他建筑物的需求较低时,它可以储存多余的能源,而人工智能可以在发电不足或无法发电时使用这些能源。该系统中有许多活动部件;因此,需要协调、预测和优化来保持电网稳定。如果你把分布式能源想象成独立的音乐家,那么公用事业就像一个指挥家,让管弦乐队及时运转,而人工智能则实时创作交响乐。因此,基于人工智能的系统可以改变游戏规则。从基础设施密集型系统转变为以人工智能为中心的系统,电网在发生不可预见的事件时会更具弹性和灵活性。现在,预测和控制可以在几秒钟内完成,而不是几天。

关于分散式能源资源,公用事业、决策者和监管机构必须开始考虑各自的角色。管理和协调分散式能源生产商的拼凑将至关重要。公用事业可以在这种情况下发挥带头作用,因为他们要应对购买电力的客户数量减少的问题,因为越来越多的家庭和企业开始利用屋顶太阳能电池板和类似技术生产自己的能源。没有时间可以浪费,因为气候变化将继续给世界带来更多极端天气。当前的经济状况和像美国预期的那样旷日持久的政治讨论可能会拖累必要的投资。最好的做法不是投资集中式电网及其由长电缆和变压器组成的网络;相反,政府应该制定一个电网计划,让社区和建筑物自己生产电力,然后通过软件实时管理。政策制定者应该考虑对可再生能源生产的公共融资以及对私营企业和家庭更分散的能源生产的激励措施。为了保证整个能源环境的互操作性、透明度和公平使用,我们需要全球认可的人工智能软件治理。

结论

积极主动、合作地管理与人工智能相关的技术对能源行业有利。未来几年对于促进该领域的创新和在整个能源系统中普及创新低碳技术至关重要。如果之前没有被接受,行业必须实施通用数据标准,作为实现这一目标和更广泛数字化的条件。能源行业参与者之间加强合作的形式可以是联合研发项目、分享将人工智能概念付诸实施的最佳实践技术以及展示使用示例。合作还可以促进人工智能技术创造者、消费者、监管机构以及与人工智能系统互动的其他利益相关者之间的信任。随着电网管理和运营变得越来越复杂,尤其是在配电网层面,电网监管机构和运营商必须考虑各种数字技术(如机器学习、量子计算、区块链技术等)在增强电网运营方式方面的潜力。随着电力系统脱碳和分散化,重新思考电网管理的必要性和为电网接入、运营和管理决策开发新的、更分散的设计的机会也随之出现。传统的手动命令和控制管理方法(使用中央系统操作员)应被技术支持的分散决策所取代,从而实现更快的决策并自动将较小的分布式资产添加到电网(例如使用区块链、数字身份和智能合约)。政府可以命令或向公共和行业机构提供激励措施,以管理和资助工业数据的中央数据库,作为公平传播数据的一部分。这些数据集将用于训练人工智能算法,并可能减少经常因数据质量差或稀疏而导致的算法偏差。

对节能耐用系统的需求上升导致了对能量收集系统的需求上升。Data Bridge Market Research 分析,在 2021-2028 年的预测期内,能量收集系统市场将呈现 10.04% 的复合年增长率。这意味着到 2028 年,目前的市场价值将上升到 10.425 亿美元。能量收集系统是一种将环境中的能量转化为可用电能的技术。该系统从环境中提取少量能量,否则这些能量会以热、光、声音或振动的形式流失。由于能量收集系统在建筑物和家用电器中的采用和应用越来越多,北美占据了市场主导地位。工业和汽车行业的增长也推动了该地区各国市场的增长。美国是最大的贡献者。

要了解有关该研究的更多信息,请访问: https://www.databridgemarketresearch.com/zh/reports/global-energy-harvesting-system-market


客户证言