Обзор
Искусственный интеллект, который может создавать такой контент, как аудио, текст, код, видео, фотографии и другие данные, известен как генеративный ИИ. Генеративный ИИ использует алгоритмы машинного обучения для получения результатов на основе набора обучающих данных, в отличие от стандартных алгоритмов ИИ, которые можно использовать для поиска закономерностей в наборе обучающих данных и составления прогнозов. Результаты генеративного ИИ могут быть на том же носителе, что и приглашение (текст в текст), или на другом носителе (текст в изображение или изображение в видео). Известные примеры — приложения генеративного искусственного интеллекта ChatGPT, Bard, DALL-E, Midjourney и DeepMind. В частности, генеративные модели ИИ получают огромное количество существующего контента для обучения моделей созданию нового контента. Они учатся выявлять основные закономерности в наборе данных на основе распределения вероятностей и при получении подсказки создавать аналогичные закономерности (или результаты на основе этих закономерностей).
Например,
Кроме того, часть общей категории машинного обучения, называемая глубоким обучением или генеративным искусственным интеллектом, использует нейронную сеть, которая позволяет ей обрабатывать более сложные шаблоны, чем традиционное машинное обучение. Нейронные сети, вдохновленные человеческим мозгом, не обязательно требуют человеческого контроля или вмешательства, чтобы различать различия или закономерности в обучающих данных.
По данным Data Bridge Market Research, ожидается, что в прогнозируемый период с 2021 по 2028 год рынок искусственного интеллекта будет расти на 26,1% в среднем на 26,1%. Отчет Data Bridge Market Research предлагает обширный анализ и лучшее понимание рынка, подчеркивая факторы, которые, как ожидается, окажут заметное влияние на его рост в течение прогнозируемого периода. Чтобы узнать больше об исследовании, перейдите по ссылке ниже.
https://www.databridgemarketresearch.com/ru/reports/global-artificial-intelligence-market
Что такое генеративный ИИ?
Генеративный ИИ относится к моделям глубокого обучения, которые могут использовать необработанные данные для генерации статистически вероятных результатов при появлении соответствующего запроса. Генеративные модели уже много лет используются в статистике для анализа числовых данных. Однако развитие глубокого обучения позволило распространить его на изображения, речь и другие сложные типы данных. Среди первых классов моделей, добившихся такого перекрестного успеха, были вариационные автокодировщики, или VAE, представленные в 2013 году. VAE были первыми моделями глубокого обучения, которые широко использовались для генерации реалистичных изображений и речи.
Генеративный ИИ может учиться на существующих артефактах, чтобы создавать новые, реалистичные артефакты, отражающие характеристики обучающих данных. Он может создавать разнообразный новый контент, например изображения, видео, музыку, речь, текст, программный код и дизайн продуктов. Генеративный ИИ использует несколько методов, которые продолжают развиваться. Прежде всего, это базовые модели ИИ, которые обучаются на широком наборе немаркированных данных, которые можно использовать для различных задач с дополнительной тонкой настройкой. Для создания этих обученных моделей требуются сложные математические вычисления и огромные вычислительные мощности, но, по сути, они представляют собой алгоритмы прогнозирования.
Типы моделей ИИ:
Модель
|
ТИП
|
Генерация изображений
|
Перевод изображения в изображение, Преобразование эскизов в реалистичные изображения, Перевод текста в изображение, Преобразование текста в речь
|
Генерация звука
|
Редактирование саундтрека, автонастройка
|
Генерация синтетических данных
|
Псевдоизображения и глубокие фейки
|
Генерация видео
|
|
Источник: Альтексофт
Путешествие генеративного искусственного интеллекта
Риски, связанные с генеративным ИИ, значительны и быстро меняются. ChatGPT и подобные программы обучаются с использованием большого количества общедоступных данных. Очень важно уделять пристальное внимание тому, как ваши компании используют платформы, поскольку они не предназначены для соблюдения общего регламента защиты данных (GDPR) и других законов об авторском праве.
Ключевые стратегии, принятые владельцами бизнеса
Генеративный ИИ проник в мир бизнеса: согласно глобальному индексу внедрения ИИ за 2022 год, его внедрили 35% компаний. Инструменты генеративного ИИ, включая ChatGPT, анализируют огромные объемы данных для получения эксклюзивной информации, которую традиционные методы методы часто не дают быстрого результата. Генеративный искусственный интеллект для бизнеса имеет далеко идущее влияние, начиная от автоматизации создания контента и заканчивая оптимизацией цепочки поставок и улучшением обслуживания клиентов. Сочетая машинное обучение и обработку естественного языка, инструменты генеративного искусственного интеллекта позволяют компаниям принимать обоснованные решения, оптимизировать свои операции и увеличивать прибыль.
Генеративный искусственный интеллект и расширенная реальность — это мощные инструменты, которые могут помочь решить насущные социальные проблемы и проблемы бизнеса, дополняя, расширяя и расширяя человеческий опыт, а не копируя или заменяя его. Генеративный ИИ может «генерировать» текст, речь, изображения, музыку, видео и особенно код. Когда эта возможность объединяется с потоком чьей-то собственной информации, используемой для настройки того, когда, что и как происходит взаимодействие, тогда легкость, с которой кто-то может выполнять задачи, и расширяется доступность программного обеспечения, резко возрастает.
Генеративный ИИ трансформирует отрасли во многих секторах и меняет бизнес быстрыми темпами благодаря своей способности генерировать новые решения, автоматизировать процедуры и улучшать способность принимать решения. Это разновидность искусственного интеллекта, которая может создавать оригинальный текст, графику и другие типы материалов. Согласно результатам опроса, генеративный ИИ — мощный инструмент, который можно применять на предприятиях различными способами. В ближайшие годы генеративный искусственный интеллект, вероятно, окажет еще большее влияние на организации по мере развития технологий.
Применение генеративного ИИ
Появление искусственного интеллекта (ИИ) существенно повлияло на то, как предприятия работают и управляют повседневными рабочими процессами. Появление разнообразных приложений и инструментов искусственного интеллекта позволило предприятиям принимать более разумные решения и автоматизировать повторяющиеся задачи, делая операции более эффективными и результативными. Профессиональные приложения для повышения производительности, такие как электронная почта и обработка текстов, теперь могут быть дополнены автоматизацией для повышения эффективности и точности благодаря новейшим разработкам в области генеративного искусственного интеллекта. Внедрение Microsoft GPT-3.5 в премиум-версии Teams является примечательной иллюстрацией возможностей генеративного ИИ. Автоматически создавая разделы, заголовки и настраиваемые маркеры, этот эффективный инструмент улучшает запись собраний. Даже упоминания могут быть выделены, что облегчит вам поиск наиболее важных отрывков разговора.
Создание контента
Создание высококачественного контента — одна из самых сложных и трудоемких задач в корпоративном мире, будь то создание описаний продуктов, рекламных материалов или даже целых статей. В таких случаях компании могут использовать генеративные технологии искусственного интеллекта в бизнесе, чтобы генерировать контент приемлемого качества за ограниченный промежуток времени. Используя алгоритмы обработки естественного языка и машинного обучения, инструменты генеративного искусственного интеллекта могут оценивать существующий контент и создавать новый, высококачественный контент, соответствующий определенным стандартам. Это может включать такие факторы, как тон, стиль и даже целевая аудитория.
Обслуживание клиентов
Обслуживание клиентов — жизненно важная область, в которой инструменты генеративного искусственного интеллекта, такие как ChatGPT, могут решать сложные бизнес-задачи. Чат-боты на базе ChatGPT могут предоставлять клиентам быстрые и точные ответы на их запросы, улучшая общее качество обслуживания клиентов. Они также могут делать индивидуальные предложения клиентам на основе их истории покупок и предпочтений.
Например,
Легальная операция
Помощь в юридических операциях компании — одно из наиболее важных бизнес-приложений генеративного ИИ. Корпорации могут получить значительные преимущества от использования генеративных инструментов искусственного интеллекта в своих юридических отделах. Благодаря способности проводить юридические исследования, тщательно изучать прецедентное право и формулировать юридические документы, генеративный ИИ может позволить командам юристов работать более умело и умело.
Например,
Управление HR-процессами
Инструменты искусственного интеллекта, такие как ChatGPT, могут оказать значительную поддержку корпоративным HR-операциям. ChatGPT, благодаря технологиям обработки естественного языка и машинного обучения, может механизировать повторяющиеся HR-работы, обеспечивая при этом точные и быстрые ответы на запросы сотрудников.
Например, предприятия могут использовать возможности генеративного искусственного интеллекта для бизнеса, чтобы разработать виртуального помощника по персоналу. Этот виртуальный помощник может помочь сотрудникам с такими задачами, как управление отпусками, управление льготами и представление новых сотрудников в организации. Более того, чат-бот может предлагать работникам индивидуальные рекомендации по развитию карьеры, исходя из их навыков и интересов, тем самым улучшая участие и удержание сотрудников. Кроме того, генеративный искусственный интеллект можно использовать для принятия мер по предотвращению мошенничества на вступительных онлайн-тестах.
Аналитика данных
Технология генеративного искусственного интеллекта в бизнесе дает значительное преимущество в анализе данных, раскрывая скрытые закономерности и тенденции, которые могут ускользать от человеческого восприятия. Способность ИИ раскрывать такую информацию дает предприятиям возможность определять новые области роста, оптимизировать операции и повышать удовлетворенность своих клиентов.
Возможности генеративного искусственного интеллекта по анализу настроений служат отличным примером использования в анализе данных. Такие инструменты, как ChatGPT, могут анализировать данные социальных сетей, чтобы определить расположение клиентов к бренду, продукту или услуге. Используя эту информацию, компании могут использовать преимущества генеративного искусственного интеллекта в бизнесе. С помощью этих данных они могут усовершенствовать свои маркетинговые стратегии, глубже понять своих клиентов и повысить их удовлетворенность. Кроме того, инструменты генеративного искусственного интеллекта способны анализировать огромные объемы данных и выявлять потенциальные риски. Такая аналитическая информация дает предприятиям, использующим генеративный искусственный интеллект, возможность активно выявлять и решать потенциальные проблемы до того, как они обострятся. Анализируя отзывы и поведение клиентов, технология генеративного искусственного интеллекта в бизнесе может выявить закономерности, которые указывают на высокий риск оттока клиентов. Эта функциональность позволяет компаниям активно реагировать на подобные ситуации, тем самым удерживая клиентов с помощью персонализированных предложений и стимулов.
Повышение продаж и целевых показателей в организации
Многие организации используют генеративный искусственный интеллект для бизнеса, особенно для увеличения продаж. Генеративный искусственный интеллект (ИИ) приобретает все большее значение в мире бизнеса как средство увеличения продаж и сохранения конкурентоспособности. Одно из конкретных применений этой технологии включает использование генеративных языковых моделей для создания персонализированных описаний продуктов, отвечающих индивидуальным потребностям и предпочтениям клиентов. Благодаря анализу данных и поведения клиентов генеративный ИИ способен генерировать уникальные и убедительные описания. Оптимизация цен — еще один способ эффективного использования генеративной технологии искусственного интеллекта в бизнесе. Анализируя рыночные тенденции, поведение клиентов и цены конкурентов, генеративные модели могут генерировать оптимальные цены на продукты или услуги. Это позволяет предприятиям максимизировать доход, сохраняя при этом ценность для своих клиентов.
Кроме того, генеративный искусственный интеллект может использоваться в бизнесе компаниями, которым нужна помощь в сегментации клиентов и проведении целевых маркетинговых кампаний. Тщательно изучая данные о клиентах, генеративные модели могут обнаруживать закономерности и создавать таргетированные кампании, которые будут привлекать определенные сегменты клиентов.
Разработка нового продукта
Разработка новых продуктов — еще одно замечательное применение генеративного искусственного интеллекта в бизнесе. Разработка инновационных продуктов и ускорение процесса проектирования может стать сложной бизнес-задачой для многих корпораций. Тем не менее, существуют творческие методологии преодоления этих препятствий, и один из них заключается в использовании механизмов с искусственным интеллектом.
Используя ИИ, предприятия могут оперативно анализировать большие объемы данных и создавать оптимизированные конструкции на основе конкретных параметров. Это может значительно сократить продолжительность и затраты на разработку продукта, сохраняя при этом качество и производительность.
Например,
Обнаружение мошенничества
Для решения сложной проблемы обнаружения мошенничества в бизнес-секторе компании могут использовать инструменты на базе искусственного интеллекта. Эти инструменты способны активно обнаруживать и пресекать различные виды мошеннических действий. Одним из преимуществ использования генеративного искусственного интеллекта для бизнеса является выявление поддельных документов, удостоверяющих личность. Эти инструменты быстро сканируют и проверяют подлинность документов, удостоверяющих личность, таких как паспорта, водительские права и т. д., чтобы предотвратить мошеннические действия.
Кроме того, компании могут использовать инструменты на базе искусственного интеллекта для выявления мошенничества с платежами. Эти инструменты тщательно изучают платежные данные и распознают сомнительные транзакции или схемы, позволяя компаниям принимать соответствующие меры и предотвращать мошеннические действия.
Еще одна область, где инструменты обнаружения мошенничества на базе искусственного интеллекта могут оказаться полезными, — это проверка фейковых учетных записей. Эти инструменты тщательно изучают поведение и данные пользователей, чтобы обнаружить фальшивые учетные записи и не дать им получить доступ к платформе или инициировать мошеннические транзакции.
Проблемы, с которыми сталкивается генеративный ИИ
Генеративный искусственный интеллект (ИИ) стал широко популярен, но его внедрение в бизнес сопряжено с определенным этическим риском. Поскольку генеративный искусственный интеллект становится все более популярным, предприятия несут ответственность за то, чтобы они использовали эту технологию этично и снижали потенциальный вред. Ниже приведены несколько проблем, с которыми могут столкнуться организации при использовании генеративного ИИ в своем бизнесе.
Заключение
Хотя чат-боты, генерирующие текст, такие как ChatGPT, привлекли большое внимание, генеративный ИИ может также создавать другие типы материалов, такие как графика, видео, аудио и компьютерный код. Кроме того, он имеет возможность классифицировать, изменять, обобщать, отвечать на запросы и создавать новые материалы для организаций. Изменяя способ выполнения работы на уровне деятельности в рамках бизнес-функций и рабочих процессов, каждое из этих действий потенциально может принести пользу. По мере развития и развития технологий подобные генеративные ИИ могут все больше интегрироваться в рабочие процессы предприятия для автоматизации задач и непосредственного выполнения конкретных действий. Однако генеративный ИИ может представлять различный риск, поскольку модели могут генерировать алгоритмическую погрешность из-за несовершенства обучающих данных или решений, принятых инженерами, разрабатывающими модели. Более того, модели могут давать разные ответы на одни и те же запросы, что затрудняет способность пользователя оценивать точность и надежность результатов.
DBMR обслуживает более 40% компаний из списка Fortune 500 по всему миру и имеет сеть из более чем 5000 клиентов. Наша команда будет рада помочь вам с вашими вопросами. Посещать, https://www.databridgemarketresearch.com/ru/contact
Связаться с намиКибербезопасность: защита пользовательских данных в Интернете
Кибербезопасность: защита пользовательских данных в Интернете
Кибербезопасность: защита пользовательских данных в Интернете
Кибербезопасность: защита пользовательских данных в Интернете
Кибербезопасность: защита пользовательских данных в Интернете