Обзор
В настоящее время общепринятой практикой является шифрование данных при их хранении или передаче, однако шифрованием используемых данных, особенно в памяти, часто пренебрегают. Более того, в традиционной вычислительной инфраструктуре отсутствуют надежные механизмы защиты данных и кода во время их активного использования. Это создает проблему для организаций, работающих с конфиденциальной информацией, такой как информация, позволяющая установить личность (PII), финансовые данные или медицинские записи, поскольку им приходится устранять потенциальные угрозы, которые могут поставить под угрозу конфиденциальность и целостность как приложения, так и данных, находящихся в системной памяти. Конфиденциальные вычисления защищают используемые данные, выполняя вычисления в аппаратной, сертифицированной доверенной среде выполнения. Создавая безопасную и изолированную среду, организации могут эффективно повысить безопасность своих операций, связанных с конфиденциальными и регулируемыми данными. Эти контролируемые среды гарантируют предотвращение несанкционированного доступа или изменения приложений и данных во время их активного использования. В результате общий уровень безопасности этих организаций значительно повышается.
Введение
Вычисления охватывают три различных состояния данных: во время передачи, в состоянии покоя и в использовании. Когда данные активно перемещаются по сети, они считаются «в пути». Данные, которые хранятся и к которым не осуществляется активный доступ, называются «неактивными». Наконец, обрабатываемые или используемые данные классифицируются как «используемые». В нашу современную эпоху, когда хранение, потребление и обмен конфиденциальными данными стали обычным явлением, защита таких данных во всех их состояниях становится все более важной. Это относится к широкому спектру конфиденциальной информации, включая данные кредитных карт, медицинские записи, конфигурации брандмауэра и даже данные геолокации. В настоящее время криптография обычно используется для обеспечения как конфиденциальности данных (препятствование несанкционированному просмотру), так и целостности данных (предотвращение или обнаружение несанкционированных изменений). Хотя сейчас широко используются методы защиты данных при передаче и хранении, третий уровень — защита используемых данных — является новым рубежом.
Риски безопасности для незащищенных данных, «используемых»
Поскольку средства защиты, применяемые к передаваемым и хранящимся данным, все чаще противодействуют векторам угроз, направленным против сети и устройств хранения, злоумышленники перешли к нацеливанию на используемые данные. В отрасли произошло несколько громких атак на память, таких как взлом Target и атаки по каналу ЦП, которые резко повысили внимание к этому третьему состоянию, а также несколько громких атак, связанных с внедрением вредоносного ПО, таких как атака Triton и Атака на энергосистему Украины.
Расширенная защита от вредоносных программ — это тип интеллектуального встроенного высокоразвитого решения корпоративного класса для анализа и защиты от вредоносных программ. Это также дает командам безопасности уровень глубокой видимости и контроля, необходимый для быстрого обнаружения атак, сотрудничества и контроля вредоносных программ до того, как они нанесут ущерб. Согласно анализу, проведенному Data Bridge Market Research, объем рынка расширенной защиты от вредоносного ПО к 2028 году оценивается в 8 901,17 миллиона долларов США, и ожидается, что совокупный годовой темп роста составит 14,30% в прогнозируемый период с 2021 по 2028 год. Отчет о расширенной защите от вредоносного ПО содержит анализ и информацию о различных факторах, которые, как ожидается, будут преобладать в течение прогнозируемого периода, а также показывает их влияние на рост рынка.
https://www.databridgemarketresearch.com/ru/reports/global-advanced-malware-protection-market
Поскольку объем данных, хранящихся и обрабатываемых на мобильных, периферийных устройствах и устройствах Интернета вещей, продолжает расти, обеспечение безопасности данных и приложений во время выполнения становится все более важным. Эти устройства часто работают в удаленных и сложных условиях, что затрудняет поддержание их безопасности. Кроме того, учитывая личный характер информации, хранящейся на мобильных устройствах, производители и поставщики мобильных операционных систем должны продемонстрировать, что персональные данные защищены и остаются недоступными для производителей устройств и третьих лиц во время обмена и обработки. Эти средства защиты должны соответствовать нормативным требованиям. Даже в ситуациях, когда вы контролируете свою инфраструктуру, защита наиболее конфиденциальных данных во время их использования является важным компонентом надежной стратегии глубокоэшелонированной защиты.
Конфиденциальные вычисления используют аппаратные доверенные среды выполнения (TEE) для защиты данных во время их активного использования. Внедряя конфиденциальные вычисления, мы можем эффективно смягчить многие угрозы, обсуждавшиеся ранее. Доверенная среда выполнения (TEE) — это среда, обеспечивающая высокий уровень гарантии с точки зрения целостности данных, конфиденциальности данных и целостности кода. Используя аппаратные методы, TEE обеспечивает расширенные гарантии безопасности для выполнения кода и защиты данных в среде.
В контексте конфиденциальных вычислений к неавторизованным объектам относятся другие приложения на хосте, операционная система хоста, гипервизор, системные администраторы, поставщики услуг и владелец инфраструктуры, а также все, кто имеет физический доступ к оборудованию. Конфиденциальность данных гарантирует, что эти неавторизованные лица не смогут получить доступ к данным, пока они используются в доверенной среде выполнения (TEE). Целостность данных защищает от несанкционированных изменений данных во время обработки объектами за пределами TEE. Целостность кода гарантирует, что неавторизованные лица не смогут заменить или изменить код внутри TEE. В совокупности эти атрибуты не только обеспечивают конфиденциальность данных, но и обеспечивают правильность вычислений, вселяя доверие к результатам вычислений. Этот уровень гарантии часто отсутствует в подходах, которые не используют аппаратное обеспечение TEE.
В следующей таблице сравнивается типичная реализация TEE с типичными реализациями двух других новых классов решений, защищающих используемые данные: гомоморфного шифрования (HE) и доверенных платформенных модулей (TPM).
Таблица 1. Сравнение свойств безопасности конфиденциальных вычислений по сравнению с HE и TPM.
|
ТРОЙНИК ГВ
|
Гомоморфное шифрование
|
ТРМ
|
Целостность данных
|
И
|
Да (при условии целостности кода)
|
Только ключи
|
Конфиденциальность данных
|
И
|
И
|
Только ключи
|
Целостность кода
|
И
|
Нет
|
И
|
Конфиденциальность кода
|
Да (может потребоваться доработка)
|
Нет
|
И
|
Аутентифицированный запуск
|
Варьируется
|
Нет
|
Нет
|
Программируемость
|
И
|
Частичные («цепи»)
|
Нет
|
Подтверждаемость
|
И
|
Нет
|
И
|
Возможность восстановления
|
И
|
Нет
|
И
|
Доверенные среды выполнения (TEE)
Согласно CCC (в соответствии с общепринятой отраслевой практикой), доверенная среда выполнения (TEE) характеризуется тремя основными свойствами, а именно:
Рис. Характеристики доверенной среды выполнения (TEE)
К несанкционированным объектам относятся различные субъекты, такие как другие приложения на хосте, операционная система хоста и гипервизор, системные администраторы, поставщики услуг, владелец инфраструктуры или кто-либо еще, кто физически обращается к оборудованию. Эти свойства в совокупности гарантируют конфиденциальность данных и точность вычислений, выполняемых в TEE, тем самым вселяя доверие к результатам вычислений.
Кроме того, в зависимости от конкретной реализации TEE, он может предлагать дополнительные функции, в том числе:
Аппаратные TEE используют аппаратные методы для обеспечения повышенных гарантий безопасности при выполнении кода и защите данных внутри TEE. Этот уровень гарантии часто отсутствует в подходах, которые не полагаются на аппаратное обеспечение TEE.
Преимущества конфиденциальных вычислений
Конфиденциальные вычисления предлагают многочисленные преимущества организациям, заботящимся о конфиденциальности и безопасности данных.
Рис. Преимущества конфиденциальных вычислений
Реализация конфиденциальных вычислений
Внедрение конфиденциальных вычислений требует тщательного планирования и рассмотрения.
В следующей таблице показано, как масштабируемость по различным показателям сравнивается между классическими вычислениями, вычислениями с использованием типичного аппаратного TEE и гомоморфного шифрования. Как и в случае сравнения безопасности, фактические ответы могут различаться в зависимости от поставщика, модели или алгоритма.
Таблица 2. Сравнение свойств масштабируемости конфиденциальных вычислений по сравнению с HE и TPM
Характеристики
|
Родной
|
ТРОЙНИК ГВ
|
Гомоморфное шифрование
|
Ограничения размера данных
|
Высокий
|
Середина
|
Низкий
|
Скорость вычислений
|
Высокий
|
Высокий-Средний
|
Низкий
|
Масштабирование между машинами
|
Да
|
Больше работы
|
Да
|
Возможность объединения данных в наборах (MPC)
|
Да
|
Да
|
Очень ограничен
|
Проблемы в реализации
Хотя конфиденциальные вычисления приносят значительные преимущества, при их внедрении организациям приходится решать ряд проблем.
Ключевые стратегии
Intel объявляет о новых инициативах в области конфиденциальных вычислений. 25 января 2023 года корпорация Intel объявила о ряде новых инициатив в области конфиденциальных вычислений. Эти инициативы включают в себя:
Google анонсирует конфиденциальную облачную платформу. Google объявила о доступности своей Confidential Cloud Platform 1 февраля 2023 года. Confidential Cloud Platform — это набор сервисов, которые помогают организациям защищать конфиденциальные данные в облаке. Эти услуги включают в себя:
Microsoft объявляет о выпуске конфиденциальных вычислений для Azure. Microsoft объявила, что переносит конфиденциальные вычисления в Azure 3 февраля 2023 года. Конфиденциальные вычисления для Azure — это набор сервисов, которые помогают организациям защищать конфиденциальные данные в облаке. Эти услуги включают в себя:
Это несколько примеров недавно объявленных ключевых стратегических инициатив, связанных с конфиденциальными вычислениями. Эти инициативы призваны помочь организациям внедрить технологии конфиденциальных вычислений и защитить конфиденциальные данные в облаке.
Реальные варианты использования
Конфиденциальные вычисления находят практическое применение в различных отраслях, позволяя организациям защищать конфиденциальные данные и обеспечивать конфиденциальность.
Рис. Варианты использования в реальном мире
Хранение и обработка ключей, секретов, учетных данных и токенов:
Криптографические ключи, секреты, учетные данные и токены — это «ключи от королевства» для организаций, ответственных за защиту конфиденциальных данных. Традиционно для соблюдения стандартов безопасности и обеспечения безопасности этих активов использовались локальные аппаратные модули безопасности (HSM). Однако запатентованный характер традиционных HSM ограничивал их масштабируемость и совместимость со средами облачных и периферийных вычислений, что приводило к увеличению затрат и проблемам с развертыванием. Конфиденциальные вычисления устраняют эти ограничения за счет использования стандартизированной вычислительной инфраструктуры, доступной локально, в общедоступных/гибридных облаках и даже на границе сети для сценариев использования Интернета вещей. Независимые поставщики программного обеспечения (ISV) и крупные организации уже используют конфиденциальные вычисления для безопасного хранения и обработки криптографической и секретной информации. Приложения управления ключами используют аппаратные доверенные среды выполнения (TEE) для хранения и обработки этих активов, обеспечивая конфиденциальность, целостность данных и целостность кода. Безопасность, достигаемая за счет конфиденциальных вычислений, сравнима с традиционными HSM, обеспечивая более масштабируемое и экономически эффективное решение для хранения и обработки конфиденциальной информации.
Варианты использования публичного облака:
В традиционных средах публичного облака доверие размещается на нескольких уровнях в инфраструктуре поставщика облачных услуг. Конфиденциальные вычисления предоставляют дополнительные гарантии защиты за счет сокращения количества уровней, которым должны доверять конечные пользователи. Благодаря аппаратным доверенным средам выполнения (TEE), обеспечивающим защиту используемых приложений и данных, неавторизованные лица, даже имеющие физический или привилегированный доступ, сталкиваются со значительными проблемами при доступе к защищенному коду приложений и данным. Конфиденциальные вычисления направлены на удаление поставщика облачных услуг из базы доверенных вычислений, что позволяет безопасно перенести рабочие нагрузки, которые ранее были ограничены соображениями безопасности или требованиями соответствия, в общедоступное облако.
Многосторонние вычисления
По мере появления новых парадигм вычислений, обеспечивающих совместное использование данных и вычислительной мощности между несколькими сторонами, обеспечение конфиденциальности и целостности конфиденциальных или регулируемых данных становится критически важным. Конфиденциальные вычисления предоставляют организациям решение для безопасного обмена и анализа данных без ущерба для их конфиденциальности, даже на ненадежных платформах. Частная многосторонняя аналитика может применяться в различных областях, таких как финансовые услуги, здравоохранение и правительство, для объединения и анализа частных данных без раскрытия базовых данных или моделей машинного обучения. Благодаря конфиденциальным вычислениям данные остаются защищенными от несанкционированного доступа и компрометации, даже от внутренних угроз, обеспечивая безопасное сотрудничество и раскрывая потенциал глобального обмена данными, одновременно снижая риски безопасности, конфиденциальности и нормативных требований.
Блокчейн
Блокчейны предоставляют неизменяемый реестр для записи и проверки транзакций без необходимости использования централизованного органа. Хотя они обеспечивают прозрачность и согласованность данных, хранение конфиденциальных данных в неизменяемой цепочке блоков создает проблемы конфиденциальности. Конфиденциальные вычисления могут улучшить реализацию блокчейна за счет использования аппаратных сред доверенного выполнения (TEE). TEE позволяют пользователям безопасно выполнять смарт-контракты, обеспечивая конфиденциальность, масштабируемость и оптимизацию проверки данных. Службы аттестации на основе TEE обеспечивают подтверждение надежности транзакций, устраняя необходимость для каждого участника независимо проверять исторические данные. Кроме того, конфиденциальные вычисления устраняют неэффективность вычислений и связи, связанную с протоколами консенсуса в системах блокчейна.
Мобильные и персональные компьютерные устройства
Конфиденциальные вычисления на клиентских устройствах предлагают варианты использования, обеспечивающие гарантии конфиденциальности и целостности данных. Разработчики приложений и производители устройств могут гарантировать, что личные данные не будут видны во время обмена или обработки, что снимает ответственность с производителей. Доверенные среды выполнения (TEE) обеспечивают формальную проверку правильности функционирования, позволяя разработчикам доказать, что пользовательские данные не покинули устройство. Например, реализации непрерывной аутентификации могут работать внутри TEE для идентификации пользователей без раскрытия конфиденциальных биометрических или поведенческих данных. Аналогичным образом, децентрализованное обучение моделей на устройстве может улучшить модели и поделиться улучшениями без утечки обучающих данных, обеспечивая контролируемую пользователем политику и ограничения посредством взаимной аттестации в аппаратном TEE.
Варианты использования Edge и IoT:
Конфиденциальные вычисления находят ценные варианты использования в периферийных средах и средах Интернета вещей, где конфиденциальность и безопасность данных имеют первостепенное значение. Например, в таких сценариях, как локальный поиск и фильтрация на домашних маршрутизаторах для обнаружения DDoS, конфиденциальная вычислительная среда может защитить конфиденциальное поведение пользователя, вытекающее из метаданных пакетов TCP/IP. Другие примеры включают конфиденциальную обработку машинного обучения, такую как генерация метаданных видео для уменьшения задержки, наблюдение с помощью камер видеонаблюдения с шаблонами интересующих лиц и модели обучения на устройстве. Технология конфиденциальных вычислений также помогает смягчить атаки, использующие физический доступ к устройствам в средах, где ненадежные стороны могут иметь физический доступ.
Совокупность записей, технологическая база данных, связанная вместе с помощью криптографии, называется блокчейном. Прогнозируется, что глобальное расширение трансграничных торговых операций повысит спрос на эту технологию. Data Bridge Market Research анализирует, что рынок блокчейнов, оцениваемый в 10,02 млрд долларов США в 2022 году, достигнет 766,10 млрд долларов США к 2030 году, среднегодовой рост составит 71,96% в течение прогнозируемого периода с 2023 по 2030 год. Принятие криптовалют законом мотивирует компании и инвесторы для увеличения своих инвестиций в технологии блокчейна. Кроме того, ожидается, что технология блокчейна в ближайшее время станет более эффективной и действенной в усилиях компаний. DeFi — это новая финансовая технология на основе блокчейна, которая уменьшает контроль банков над финансовыми услугами и деньгами. В течение прогнозируемого периода ожидается рост рынка за счет увеличения стратегических инициатив в пространстве децентрализованного финансирования.
Будущие тенденции и направления
Область конфиденциальных вычислений быстро развивается, и можно выделить несколько будущих тенденций и направлений.
Заключение
Конфиденциальные вычисления предлагают новаторский подход к защите конфиденциальных данных во время обработки в ненадежных средах. Сочетая такие принципы, как изоляция данных, безопасные анклавы, аттестация, шифрование и минимизация предположений о доверии, организации могут обеспечить конфиденциальность и целостность своих данных. Несмотря на проблемы, связанные с производительностью, управлением ключами, устаревшими системами и переносимостью приложений, преимущества внедрения конфиденциальных вычислений значительны. Реальные варианты использования демонстрируют его ценность в здравоохранении, финансах, периферийных и облачных вычислениях. Следуя передовому опыту и учитывая будущие тенденции, организации могут использовать конфиденциальные вычисления для защиты своих конфиденциальных данных и сохранения конфиденциальности во все более взаимосвязанном мире.
DBMR обслуживает более 40% компаний из списка Fortune 500 по всему миру и имеет сеть из более чем 5000 клиентов. Наша команда будет рада помочь вам с вашими вопросами. Посещать, https://www.databridgemarketresearch.com/ru/contact
Связаться с намиКибербезопасность: защита пользовательских данных в Интернете
Кибербезопасность: защита пользовательских данных в Интернете
Кибербезопасность: защита пользовательских данных в Интернете
Кибербезопасность: защита пользовательских данных в Интернете
Кибербезопасность: защита пользовательских данных в Интернете