Испания Машинное обучение как рынок услуг, по услуге (управляемая услуга, профессиональная, профессиональная услуга), бизнес-функция (кадры, продажи и маркетинг, финансы и эксплуатация), модель развертывания (облако, локально), размер организации (крупная организация) , малая и средняя организация), приложение (обнаружение наркотиков, обнаружение мошенничества и управление рисками, обработка естественного языка, маркетинг и реклама, безопасность и наблюдение, распознавание изображений, прогнозная аналитика, интеллектуальный анализ данных, дополненная и виртуальная реальность), конечный пользователь (банковское дело, Финансовые услуги и страхование, ИТ и телекоммуникации, исследования и академические исследования, государственный и государственный сектор, розничная торговля и электронная коммерция, производство, здравоохранение и фармацевтика, путешествия и логистика, энергетика и коммунальные услуги, средства массовой информации и развлечения) – тенденции отрасли и прогноз до 2029 года
Анализ рынка и размер
Компании, занимающиеся машинным обучением как мерой рынка услуг, концентрируются на таких важных отраслях, как медицинские технологии, БФСИи телекоммуникаций, чтобы определить стабильные потоки доходов после пандемии коронавируса. Однако технологические ошибки и нехватка специалистов с опытом машинного обучения, по-видимому, являются одним из основных сдерживающих факторов при внедрении машинного обучения в организациях. Это может создавать препятствия на пути внедрения машинного обучения в качестве сервисной платформы. Кроме того, отсутствие безопасности знаний из-за нехватки оборудования негативно влияет на расширение рынка. Следовательно, участники рынка машинного обучения как сервиса должны сотрудничать с правительством и ограничительными организациями для стандартизации машинного обучения как бизнеса в сфере услуг.
Исследование Data Bridge Market Research анализирует, что рыночная стоимость машинного обучения как услуги, которая в 2021 году составляла 5,45 миллиарда долларов США, как ожидается, достигнет стоимости 79,34 миллиарда долларов США к 2029 году при среднегодовом темпе роста 39,76% в течение прогнозируемого периода 2022-2029 годов.
Определение рынка
Машинное обучение — это технология, которая дает компьютерам возможность изучать и изменять фундаментальные функции при воздействии различных наборов данных. машинное обучение стало важнейшим инструментом для бизнеса. Такие технологические гиганты, как Amazon и Google, тратят огромные средства на увеличение и укрепление своей клиентской базы.
Объем отчета и сегментация рынка
Отчет по метрике |
Подробности |
Прогнозный период |
2022–2029 гг. |
Базисный год |
2021 год |
Исторические годы |
2020 г. (настраивается на 2019–2014 гг.) |
Количественные единицы |
Выручка в миллиардах долларов США, объемы в единицах, цены в долларах США. |
Охваченные сегменты |
Сервис (управляемый сервис, профессиональный, профессиональный сервис), бизнес-функция (отдел кадров, продажи и маркетинг, финансы и эксплуатация), модель развертывания (облако, локально), размер организации (крупная организация, малая и средняя организация), приложение ( Обнаружение наркотиков, обнаружение мошенничества и управление рисками, обработка естественного языка, маркетинг и реклама, безопасность и наблюдение, распознавание изображений, прогнозная аналитика, интеллектуальный анализ данных, дополненная и виртуальная реальность, конечный пользователь (банковское дело, финансовые услуги и страхование, ИТ и телекоммуникации) , Исследования и академическая деятельность, Государственный и государственный сектор, Розничная торговля и электронная торговля, Производство, Здравоохранение и фармацевтика, Путешествия и логистика, Энергетика и коммунальные услуги, СМИ и развлечения) |
Охваченные игроки рынка |
Google (США), Microsoft (США), IBM (США), SAP (Германия), Amazon Web Services, Inc. (США) |
Возможности рынка |
|
Испания Машинное обучение как услуга Динамика рынка
В этом разделе рассматривается понимание движущих сил рынка, преимуществ, возможностей, ограничений и проблем. Все это подробно обсуждается ниже:
Драйверы:
- Достижения в технологиях
Область быстрого прогресса и инноваций происходит в области санкционирующих технологий. Многие поставщики разрешений проделывают большую работу в этих областях. Например, компания Affectiva недавно запустила свою технологию анализа чувств, которая имеет крупнейшее хранилище знаний, содержащее более двух миллионов видеороликов с лицами, что позволяет своим покупателям достигать высокой точности и непревзойденной информации. Помимо этого, альтернативные игроки, такие как небольшие игроки, такие как Cognitec System, Emotient, Gesturetek, Saffron и Palantir, создают жизненно важные достижения в области распознавания жестов, распознавания лиц, вычисления психологических характеристик и анализа соматических клеток. Ожидается, что эти разработки будут способствовать расширению рынка в ближайшие годы.
- Хранение и архивирование данных
В алгоритмах глубокого обучения пакет хранения и архивирования информации играет важную роль в прогнозировании решений чрезвычайно сложных проблем. Поскольку алгоритмическая программа глубокого обучения имеет дело с синтетической нейронной сетью, состоящей из множества слоев, для получения результата ей требуется огромное количество наборов информации. Алгоритмическая программа глубокого обучения использует пакет хранения и архивирования информации, чтобы сосредоточиться на расширенных функциях искусственной нейронной сети.
- Моделирование и обработка
За последнее десятилетие технологии машинного обучения превратились в «алгоритмы», разработанные из множества областей, включая статистику, арифметику, нейробиологию и вычисления, что сделало их коммерчески жизнеспособными и вычислительно надежными. несколько приложений, предлагаемых в наши дни, таких как распознавание речи, обнаружение мошенничества и улучшение сети, используют различные методы машинного обучения, поддерживаемые классификацией, регрессией и оценкой, для обработки структурированных наборов знаний.
- Облачный и веб-интерфейс программирования приложений (APIS)
В правилах машинного обучения потребность в информации является жизненно важным входным параметром. Ряду бизнес-вертикалей, таких как банковское дело и денежно-кредитные услуги, требуется огромное количество информации, чтобы мгновенно предсказать поведение рынка. Алгоритмы машинного обучения получают ужасно меньше времени для прогнозирования решений при сборе информации из программного обеспечения для хранения и архивирования информации. Чтобы превзойти это качество, алгоритмы машинного обучения создают интерфейс между облаком и, следовательно, платформой приложений.
Возможности:
- Увеличение инвестиций в отрасль здравоохранения
В области медицины огромные объемы информации используются для расчета сложных статистических данных в больших объемах, что позволяет выявить тенденции и закономерности, которые имеют решающее значение для приложений в сфере внимания. Огромный объем информации помогает врачам предвидеть проблемы еще до их возникновения. Кластер Elsevier Health Analytics произвел революцию в уходе за пациентами в ФРГ, разместив огромный объем информации. Компания тесно сотрудничает с экономистами здравоохранения, врачами, статистиками, ИТ-специалистами и аналитиками для сбора научно обоснованной информации о приемлемых методах лечения. Это часто управляется огромным объемом информации и соответствующим образом используется медицинскими работниками с помощью искусственного интеллекта. Подготовка огромного объема информации привела к расширению рынка машинного обучения в Германии.
Ограничения/проблемы:
Нехватка надежной рабочей силы для внедрения машинного обучения как рынка услуг может стать ключевой проблемой, которая в определенной степени будет препятствовать росту мирового машинного обучения как рынка услуг. Кроме того, предприятия хотели бы получить квалифицированные услуги по настройке конкретных функций для реализации на своих платформах MLaaS. Проблемы со строгим соблюдением требований – еще одна проблема, которая, как ожидается, будет сдерживать целевой рынок.
Это машинное обучение как услуга Отчет о рынке содержит подробную информацию о последних событиях, торговых правилах, анализе импорта-экспорта, анализе производства, оптимизации цепочки создания стоимости, доле рынка, влиянии внутренних и локализованных игроков рынка, анализирует возможности с точки зрения новых источников доходов, изменений в рыночном регулировании, стратегических анализ роста рынка, размер рынка, рост рынка категорий, ниши приложений и доминирование, одобрение продуктов, запуск продуктов, географическое расширение, технологические инновации на рынке. Чтобы получить больше информации о машинном обучении как услуге контакт с рынком Data Bridge Market Research для аналитика. Наша команда поможет вам принять обоснованное рыночное решение для достижения роста рынка.
Влияние COVID-19 на Машинное обучение как услуга Рынок
Пандемия COVID-19 усилила интерес к машинному обучению, поскольку в мире практикуются технологии социального дистанцирования. Внедрение машинного обучения как услуги Рынок должен быть возможен через каждую программную систему и сервис в зависимости от объема и характера интеграции. Использование тепловых камер и систем кластерной идентификации стало обычным явлением на аэровокзалах, вокзалах и в других местах общественного посещения. Это вывело рынки машинного обучения как услуги в центр внимания мысли, что, по прогнозам, будет способствовать расширению целевого рынка. Кроме того, использование искусственного интеллекта для распознавания присутствия людей в ограниченных зонах в клиниках, связанных с центрами лечения COVID, оказывает положительное влияние на мировой рынок машинного обучения как рынка услуг. Расчеты, используемые для ИИ и исследований, улучшились благодаря хорошему позднему исследованию, которое создает динамические возможности для игроков/поставщиков, работающих на рынке машинного обучения как рынка услуг.
Испания Машинное обучение как услуга Объем рынка
Машинное обучение как услуга Рынок сегментирован на основе услуг, модели развертывания бизнес-функций, размера организации, приложения и конечного пользователя. Рост этих сегментов поможет вам проанализировать скудные сегменты роста в отраслях и предоставить пользователям ценный обзор рынка и понимание рынка для помочь им принять стратегические решения для определения основных рыночных приложений.
Услуга
- Управляемый сервис
- Профессиональный
- Професиональные услуги
Бизнес-функция
- Человеческие ресурсы
- Продажи и маркетинг
- Финансы и эксплуатация
Модель развертывания
- Облако
- На территории
Размер организации
- Крупная организация
- Малая и средняя организация
Приложение
- Открытие наркотиков
- Обнаружение мошенничества и управление рисками
- Обработка естественного языка
- Маркетинг и реклама
- Безопасность и Наблюдение
- Распознавание изображений
- Прогнозная аналитика
- Сбор данных
- Дополненная и виртуальная реальность
Конечный пользователь
- Банковские и финансовые услуги
- Страхование
- ИТ и Телеком
- Научно-академическая
- Правительство и государственный сектор
- Розничная торговля и электронная коммерция
- Производство
- Здравоохранение и фармацевтика
- Путешествия и логистика
- Энергетика и коммунальное хозяйство
- СМИ и развлечения
Конкурентная среда и Машинное обучение как услуга Анализ доли рынка
Машинное обучение как услуга Конкурентная среда рынка предоставляет подробную информацию о конкурентах. Подробная информация включает обзор компании, финансовые показатели компании, полученный доход, рыночный потенциал, инвестиции в исследования и разработки, новые рыночные инициативы, глобальное присутствие, производственные площадки и объекты, производственные мощности, сильные и слабые стороны компании, запуск продукта, ширину и широту продукта, применение. доминирование. Приведенные выше данные относятся только к фокусу компаний, связанному с машинным обучением как рынком услуг.
Некоторые из основных игроков, работающих на рынке машинного обучения как услуг:
- Google (США),
- Майкрософт (США),
- IBM (США),
- SAP (Германия),
- Amazon Web Services, Inc. (США)
Артикул-