Рынок машинного обучения как услуги в Испании, по услуге (управляемая услуга, профессиональная, профессиональная услуга), бизнес-функция (человеческие ресурсы, продажи и маркетинг, финансы и эксплуатация), модель развертывания (облачная, локальная), размер организации (крупная организация, малая и средняя организация), применение (обнаружение лекарств, обнаружение мошенничества и управление рисками, обработка естественного языка, маркетинг и реклама, безопасность и наблюдение, распознавание изображений , предиктивная аналитика, интеллектуальный анализ данных, дополненная и виртуальная реальность), конечный пользователь (банковское дело, финансовые услуги и страхование, ИТ и телекоммуникации, исследования и академические исследования, государственный и общественный сектор, розничная торговля и электронная коммерция, производство, здравоохранение и фармацевтика, путешествия и логистика, энергетика и коммунальные услуги, медиа и развлечения) — отраслевые тенденции и прогноз до 2029 года
Анализ и размер рынка
Компании на рынке машинного обучения как услуги концентрируются на таких важных отраслях, как здравоохранение, BFSI и телекоммуникации, чтобы определить стабильные потоки доходов после суммы коронавируса. Однако технологические ошибки и нехватка экспертов с опытом машинного обучения, по-видимому, являются одними из основных сдерживающих факторов при принятии машинного обучения организациями. Это может создавать препятствия при внедрении платформ машинного обучения как услуги. Кроме того, нехватка безопасности знаний из-за нехватки оборудования отрицательно влияет на расширение рынка. Следовательно, участники рынка машинного обучения как услуги должны сотрудничать с правительством и ограничительными организациями для стандартизации машинного обучения как услуги.
По данным исследования рынка Data Bridge, ожидается, что рыночная стоимость машинного обучения как услуги, которая в 2021 году составила 5,45 млрд долларов США, к 2029 году достигнет 79,34 млрд долларов США при среднегодовом темпе роста 39,76 % в прогнозируемый период 2022–2029 годов.
Определение рынка
Машинное обучение — это технология, которая дает компьютерам возможность изучать и изменять основные функции при воздействии различных наборов данных. Машинное обучение стало важнейшим инструментом для бизнеса. Такие технологические гиганты, как Amazon и Google, вкладывают огромные средства в расширение и укрепление своей клиентской базы.
Область отчета и сегментация рынка
Отчет Метрика |
Подробности |
Прогнозируемый период |
2022-2029 |
Базовый год |
2021 |
Исторические годы |
2020 (Можно настроить на 2019 - 2014) |
Количественные единицы |
Выручка в млрд долл. США, объемы в единицах, цены в долл. США |
Охваченные сегменты |
Услуга (управляемая услуга, профессиональная, профессиональная услуга), бизнес-функция (кадровые ресурсы, продажи и маркетинг, финансы и эксплуатация), модель развертывания (облачная, локальная), размер организации (крупная организация, малая и средняя организация), приложение (обнаружение лекарств, обнаружение мошенничества и управление рисками, обработка естественного языка, маркетинг и реклама, безопасность и наблюдение, распознавание изображений, предиктивная аналитика, интеллектуальный анализ данных, дополненная и виртуальная реальность), конечный пользователь (банковское дело, финансовые услуги и страхование, ИТ и телекоммуникации, исследования и академические исследования, государственный и общественный сектор, розничная торговля и электронная коммерция, производство, здравоохранение и фармацевтика, путешествия и логистика, энергетика и коммунальное хозяйство, медиа и развлечения) |
Охваченные участники рынка |
Google (США), Microsoft (США), IBM (США), SAP (Германия), Amazon Web Services, Inc. (США) |
Возможности рынка |
|
Динамика рынка машинного обучения как услуги в Испании
В этом разделе рассматривается понимание движущих сил рынка, преимуществ, возможностей, ограничений и проблем. Все это подробно обсуждается ниже:
Водители:
- Достижения в области технологий
Стремительные достижения и инновации происходят в санкционирующих технологиях. Многочисленные поставщики решений проделывают большую работу в этих областях. Например, Affectiva недавно запустила свою технологию анализа ощущений, которая имеет крупнейшее хранилище знаний из более чем двух миллионов видео лиц, санкционируя своих покупателей для достижения высокой точности с непревзойденными идеями. Помимо этого, другие игроки, такие как небольшие игроки, такие как Cognitec System, Emotient, Gesturetek, Saffron и Palantir, создают важные достижения в области распознавания жестов, распознавания лиц, вычисления психологических признаков и анализа соматических клеток. Ожидается, что эти разработки будут подпитывать расширение рынка в последующие годы.
- Хранение и архивирование данных
В алгоритмах глубокого обучения пакет хранения и архивирования информации играет важную роль в прогнозировании решений для ужасно сложных проблем. Поскольку алгоритмическая программа глубокого обучения имеет дело с синтетической нейронной сетью, состоящей из множества слоев, ей требуется огромное количество наборов информации для предоставления результата. Алгоритмическая программа глубокого обучения использует пакет хранения и архивирования информации, чтобы сосредоточиться на расширенных функциях в искусственной нейронной сети.
- Моделирование и обработка
Over the last decade, machine learning technologies have evolved into “algorithms” developed from numerous fields together with statistics, arithmetic, neurobiology, and computing, creating them commercially viable and computationally sturdy. several applications offered these days like speech recognition, fraud detection, and network improvement use a spread of machine learning techniques supported classification, regression, and estimation to method structured knowledge sets.
- Cloud and Web-Based Application Programming Interface (APIS)
In machine learning rule, demand of information is a vital input parameter. A number of the business verticals like banking and monetary services would like an outsized quantity of information instantly to predict the market behavior. Machine learning algorithms get terribly less time to predict solutions when gathering information from information storage and archiving software package. To beat this quality, machine learning algorithms produce an interface between cloud and therefore the application platform.
Opportunities:
- Increasing investments in the healthcare industry
In the field of medicine, huge information is deployed for computing difficult statistics in huge amounts thus on deliver trends and patterns that square measure crucial for applications within the attention business. Huge information aids physicians in anticipating issues before they occur. The Elsevier Health Analytics cluster has revolutionized patient care in FRG by deploying huge information. The corporate is closely coordinative with health economists, physicians, statisticians, IT specialists and analysts for growing the evidence-driven information on acceptable treatments. This is often managed by huge information in attention and befittingly employed by medical professionals with the assistance of AI. The preparation of huge information in attention has so increased the expansion of Germany’s marketplace for machine learning.
Restrictions/ challenges:
Lack of sure-handed labor to put in machine learning as a service market could be a key issue which will hamper growth of the world machine learning as a service market to an exact extent. In addition, businesses would like skilled services to customise specific functions to implement on their MLaaS platforms. Stringent compliance problems is another issue expected to restrain the target market.
Этот отчет о рынке машинного обучения как услуги содержит сведения о последних разработках, правилах торговли, анализе импорта-экспорта, анализе производства, оптимизации цепочки создания стоимости, доле рынка, влиянии внутренних и локальных игроков рынка, анализирует возможности с точки зрения новых источников дохода, изменений в правилах рынка, стратегического анализа роста рынка, размера рынка, роста рынка категорий, ниш приложений и доминирования, одобрения продуктов, запусков продуктов, географических расширений, технологических инноваций на рынке. Чтобы получить больше информации о рынке машинного обучения как услуги, свяжитесь с Data Bridge Market Research для получения аналитического обзора, наша команда поможет вам принять обоснованное рыночное решение для достижения роста рынка.
Влияние COVID-19 на рынок машинного обучения как услуги
Пандемия COVID-19 ускорила интерес к машинному обучению, поскольку мир практикует технологии социального дистанцирования. Внедрение машинного обучения как рынка услуг должно быть осуществимо через каждую программную систему и услуги в зависимости от объема и характера интеграции. Использование тепловизоров и систем идентификации кластеров стало обычным явлением в аэропортах, на вокзалах и в различных местах общественного посещения. Это привлекло внимание к рынкам машинного обучения как услуг, что, как ожидается, в дальнейшем расширит целевой рынок. Кроме того, использование ИИ для распознавания присутствия людей в закрытых зонах в клиниках, связанных с лечением COVID, оказывает положительное влияние на мировой рынок машинного обучения как услуг. Расчеты, используемые для ИИ и исследований, улучшились благодаря хорошему результату, что создает динамичный шанс для игроков/поставщиков, работающих на рынке машинного обучения как услуг.
Масштаб рынка машинного обучения как услуги в Испании
Рынок машинного обучения как услуги сегментируется на основе услуг, модели развертывания бизнес-функций, размера организации, области применения и конечного пользователя. Рост среди этих сегментов поможет вам проанализировать сегменты со слабым ростом в отраслях и предоставить пользователям ценный обзор рынка и рыночную информацию, которые помогут им принимать стратегические решения для определения основных рыночных приложений.
Услуга
- Управляемая услуга
- Профессиональный
- Профессиональное обслуживание
Бизнес-функция
- Человеческие ресурсы
- Продажи и маркетинг
- Финансы и эксплуатация
Модель развертывания
- Облако
- На территории
Размер организации
- Крупная организация
- Малые и средние организации
Приложение
- Открытие лекарств
- Обнаружение мошенничества и управление рисками
- Обработка естественного языка
- Маркетинг и реклама
- Безопасность и наблюдение
- Распознавание изображений
- Прогностическая аналитика
- Интеллектуальный анализ данных
- Дополненная и виртуальная реальность
Конечный пользователь
- Банковские и финансовые услуги
- Страхование
- ИТ и Телеком
- Исследования и академические исследования
- Правительство и общественный сектор
- Розничная торговля и электронная коммерция
- Производство
- Здравоохранение и фармацевтика
- Путешествия и логистика
- Энергия и коммунальные услуги
- СМИ и развлечения
Конкурентная среда и анализ доли рынка машинного обучения как услуги
Конкурентная среда рынка машинного обучения как услуги содержит сведения по конкурентам. Включены сведения о компании, финансы компании, полученный доход, рыночный потенциал, инвестиции в исследования и разработки, новые рыночные инициативы, глобальное присутствие, производственные площадки и объекты, производственные мощности, сильные и слабые стороны компании, запуск продукта, широта и широта продукта, доминирование приложений. Приведенные выше данные относятся только к фокусу компаний, связанному с рынком машинного обучения как услуги.
Некоторые из основных игроков, работающих на рынке машинного обучения как услуги:
- Google (США),
- Майкрософт (США),
- IBM (США),
- SAP (Германия),
- Amazon Web Services, Inc. (США)
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Интерактивная панель анализа данных
- Панель анализа компании для возможностей с высоким потенциалом роста
- Доступ аналитика-исследователя для настройки и запросов
- Анализ конкурентов с помощью интерактивной панели
- Последние новости, обновления и анализ тенденций
- Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Содержание
1 INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF SPAIN MACHINE LEARNING AS A SERVICE MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATION
1.6 MARKETS COVERED
2 MARKET SEGMENTATION
2.1 KEY TAKEAWAYS
2.2 ARRIVING AT THE SPAIN MACHINE LEARNING AS A SERVICE MARKET SIZE
2.3 VENDOR POSITIONING GRID
2.4 TECHNOLOGY LIFE LINE CURVE
2.5 MULTIVARIATE MODELLING
2.6 TOP TO BOTTOM ANALYSIS
2.7 STANDARDS OF MEASUREMENT
2.8 VENDOR SHARE ANALYSIS
2.9 DATA POINTS FROM KEY PRIMARY INTERVIEWS
2.1 DATA POINTS FROM KEY SECONDARY DATABASES
2.11 SPAIN MACHINE LEARNING AS A SERVICE MARKET: RESEARCH SNAPSHOT
2.12 ASSUMPTIONS
3 MARKET OVERVIEW
3.1 DRIVERS
3.2 RESTRAINTS
3.3 OPPORTUNITIES
3.4 CHALLENGES
4 EXECUTIVE SUMMARY
5 PREMIUM INSIGHTS
6 PORTER’S FIVE FORCE MODEL
6.1 OVERVIEW
6.2 BARGAINING POWER OF BUYERS
6.3 BARGAINING POWER OF SUPPLIERS
6.4 THREAT OF NEW ENTRANTS
6.5 THREAT OF SUBSTITUTES
6.6 THREAT OF RIVALRY
7 INDUSTRY INSIGHTS
8 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY COMPONENT
8.1 OVERVIEW
8.2 SOFTWARE
8.3 SERVICE
8.3.1 BY TYPE
8.3.2 PROFESSIONAL SERVICE
8.3.2.1. CONSULTING & TRAINING SERVICES
8.3.2.2. SUPPORT & MAINTENANCE SERVICES
8.3.2.3. IMPLEMENTATION SERVICES
8.3.3 MANAGED SERVICE
9 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY BUSINESS FUNCTION
9.1 OVERVIEW
9.2 HUMAN RESOURCES
9.3 SALES AND MARKETING
9.4 FINANCE
9.5 OPERATION
10 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY DEPLOYMENT MODEL
10.1 OVERVIEW
10.2 CLOUD
10.3 ON-PREMISE
11 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY ORGANIZATION SIZE
11.1 OVERVIEW
11.2 LARGE ORGANIZATION
11.2.1 BY DEPLOYMENT MODEL
11.2.1.1. CLOUD
11.2.1.2. ON-PREMISE
11.3 SMALL & MEDIUM ORGANIZATION
11.3.1 BY DEPLOYMENT MODEL
11.3.1.1. CLOUD
11.3.1.2. ON-PREMISE
12 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY APPLICATION
12.1 OVERVIEW
12.2 DATA MINING
12.3 NATURAL LANGUAGE PROCESSING
12.4 IMAGE RECOGNITION
12.5 DRUG DISCOVERY
12.6 PREDICTIVE ANALYTICS
12.7 FRAUD DETECTION AND RISK MANAGEMENT
12.8 MARKETING AND ADVERTISING
12.9 AUGMENTED & VIRTUAL REALITY
12.1 SECURITY AND SURVEILLANCE
12.11 OTHERS
13 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY END-USER
13.1 OVERVIEW
13.2 BANKING, FINANCIAL SERVICES, AND INSURANCE
13.2.1 BY OFFERING
13.2.1.1. SOFTWARE
13.2.1.2. SERVICES
13.3 IT AND TELECOMMUNICATION
13.3.1 BY OFFERING
13.3.1.1. SOFTWARE
13.3.1.2. SERVICES
13.4 RESEARCH AND ACADEMIC
13.4.1 BY OFFERING
13.4.1.1. SOFTWARE
13.4.1.2. SERVICES
13.5 GOVERNMENT AND PUBLIC SECTOR
13.5.1 BY OFFERING
13.5.1.1. SOFTWARE
13.5.1.2. SERVICES
13.6 RETAIL & ECOMMERCE
13.6.1 BY OFFERING
13.6.1.1. SOFTWARE
13.6.1.2. SERVICES
13.7 MANUFACTURING
13.7.1 BY OFFERING
13.7.1.1. SOFTWARE
13.7.1.2. SERVICES
13.8 HEALTHCARE AND PHARMACEUTICALS
13.8.1 BY OFFERING
13.8.1.1. SOFTWARE
13.8.1.2. SERVICES
13.9 TRAVEL & LOGISTICS
13.9.1 BY OFFERING
13.9.1.1. SOFTWARE
13.9.1.2. SERVICES
13.1 ENERGY AND UTILITY
13.10.1 BY OFFERING
13.10.1.1. SOFTWARE
13.10.1.2. SERVICES
13.10.2 BY OFFERING
13.10.2.1. SOFTWARE
13.10.2.2. SERVICES
13.11 MEDIA AND ENTERTAINMENT
13.11.1 BY OFFERING
13.11.1.1. SOFTWARE
13.11.1.2. SERVICES
13.12 ACADEMIA AND RESEARCH
13.12.1 BY OFFERING
13.12.1.1. SOFTWARE
13.12.1.2. SERVICES
13.13 OTHERS
14 SPAIN MACHINE LEARNING AS A SERVICE MARKET, COMPANY LANDSCAPE
14.1 COMPANY SHARE ANALYSIS: SPAIN
14.2 MERGERS & ACQUISITIONS
14.3 NEW PRODUCT DEVELOPMENT & APPROVALS
14.4 EXPANSIONS
14.5 REGULATORY CHANGES
14.6 PARTNERSHIP AND OTHER STRATEGIC DEVELOPMENTS
15 SPAIN MACHINE LEARNING AS A SERVICE MARKET, SWOT & DBMR ANALYSIS
16 SPAIN MACHINE LEARNING AS A SERVICE MARKET, COMPANY PROFILE
16.1 MICROSOFT
16.1.1 COMPANY SNAPSHOT
16.1.2 REVENUE ANALYSIS
16.1.3 GEOGRAPHIC PRESENCE
16.1.4 PRODUCT PORTFOLIO
16.1.5 RECENT DEVELOPMENTS
16.2 AMAZON WEB SERVICES, INC.
16.2.1 COMPANY SNAPSHOT
16.2.2 GEOGRAPHIC PRESENCE
16.2.3 PRODUCT PORTFOLIO
16.2.4 RECENT DEVELOPMENTS
16.3 GOOGLE,LLC
16.3.1 COMPANY SNAPSHOT
16.3.2 GEOGRAPHIC PRESENCE
16.3.3 REVENUE ANALYSIS
16.3.4 PRODUCT PORTFOLIO
16.3.5 RECENT DEVELOPMENTS
16.4 IBM
16.4.1 COMPANY SNAPSHOT
16.4.2 GEOGRAPHIC PRESENCE
16.4.3 REVENUE ANALYSIS
16.4.4 PRODUCT PORTFOLIO
16.4.5 RECENT DEVELOPMENTS
16.5 SAP SE
16.5.1 COMPANY SNAPSHOT
16.5.2 GEOGRAPHIC PRESENCE
16.5.3 PRODUCT PORTFOLIO
16.5.4 RECENT DEVELOPMENTS
16.6 BIGML
16.6.1 COMPANY SNAPSHOT
16.6.2 GEOGRAPHIC PRESENCE
16.6.3 PRODUCT PORTFOLIO
16.6.4 RECENT DEVELOPMENTS
16.7 ISHIR
16.7.1 COMPANY SNAPSHOT
16.7.2 GEOGRAPHIC PRESENCE
16.7.3 PRODUCT PORTFOLIO
16.7.4 RECENT DEVELOPMENTS
16.8 HEWLETT PACKARD ENTERPRISE DEVELOPMENT LP
16.8.1 COMPANY SNAPSHOT
16.8.2 GEOGRAPHIC PRESENCE
16.8.3 PRODUCT PORTFOLIO
16.8.4 RECENT DEVELOPMENTS
16.9 SAS INSTITUTE INC.
16.9.1 COMPANY SNAPSHOT
16.9.2 GEOGRAPHIC PRESENCE
16.9.3 PRODUCT PORTFOLIO
16.9.4 RECENT DEVELOPMENTS
16.1 FICO
16.10.1 COMPANY SNAPSHOT
16.10.2 GEOGRAPHIC PRESENCE
16.10.3 PRODUCT PORTFOLIO
16.10.4 RECENT DEVELOPMENTS
17 QUESTIONNAIRE
18 CONCLUSION
19 RELATED REPORTS
20 ABOUT DATA BRIDGE MARKET RESEARCH
Методология исследования
Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.
Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.
Доступна настройка
Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.