Рынок нейронных сетей глубокого обучения (DNN) на Ближнем Востоке и в Африке – тенденции отрасли и прогноз до 2028 года

Запрос на TOC Запрос на TOC Обратиться к аналитику Обратиться к аналитику Купить сейчас Купить сейчас Узнать перед покупкой Узнать перед покупкой Бесплатный пример отчета Бесплатный пример отчета

Рынок нейронных сетей глубокого обучения (DNN) на Ближнем Востоке и в Африке – тенденции отрасли и прогноз до 2028 года

  • ICT
  • Upcoming Report
  • Nov 2021
  • MEA
  • 350 Pages
  • Количество таблиц: 220
  • Количество рисунков: 60

>Рынок нейронных сетей глубокого обучения (DNN) на Ближнем Востоке и в Африке, по компонентам (оборудование, программное обеспечение и услуги), применению (распознавание изображений, обработка естественного языка, распознавание речи, интеллектуальный анализ данных), конечному пользователю (банковское дело, финансовые услуги и страхование (BFSI), ИТ и телекоммуникации, здравоохранение, розничная торговля, автомобилестроение, производство, аэрокосмическая и оборонная промышленность, безопасность и другие), стране (ОАЭ, Саудовская Аравия, Египет, Южная Африка, Израиль, остальные страны Ближнего Востока и Африки) Тенденции отрасли и прогноз до 2028 года

Рынок нейронных сетей глубокого обучения (DNN) на Ближнем Востоке и в АфрикеАнализ рынка и идеи: рынок нейронных сетей глубокого обучения (DNN) на Ближнем Востоке и в Африке

Ожидается, что рынок нейронных сетей глубокого обучения (DNN) будет расти темпами 21,30% в прогнозируемый период с 2021 по 2028 год и, как ожидается, достигнет значения в 750 миллионов долларов США к 2028 году. Отчет Data Bridge Market Research о рынке нейронных сетей глубокого обучения (DNN) содержит анализ и информацию о различных факторах, которые, как ожидается, будут преобладать в течение прогнозируемого периода, а также их влиянии на рост рынка. Рост спроса на продукт для различных промышленных приложений ускоряет рост рынка нейронных сетей глубокого обучения (DNN).

Глубокие нейронные сети (DNN) относятся к технологии машинного обучения, которая широко применяется для диагностики, прогнозирования и принятия решений, среди прочего, на четко определенной вычислительной архитектуре. Эти технологии применяются в различных приложениях, таких как распознавание речи, компьютерная безопасность, распознавание изображений и видео, для медицинской диагностики, обнаружения промышленных неисправностей и финансов.

Рост популярности искусственного интеллекта (ИИ) в регионе выступает в качестве одного из основных факторов, способствующих росту рынка нейронных сетей глубокого обучения (DNN). Высокое внедрение технологии благодаря повышенной вычислительной мощности, обучаемости и скорости нейронных сетей, а также увеличение сбора данных от пользователей различными организациями ускоряют рост рынка. Быстрое внедрение новых компонентов, особенно ИИ, среди потребителей и отраслей конечного пользователя, поскольку это помогает им облегчить свою жизнь и принимать обоснованные и обоснованные решения, а также всплеск спроса на обнаружение сложных нелинейных связей между переменными и распознавание закономерностей в больших данных дополнительно влияют на рынок. Кроме того, всплеск инвестиций, быстрая оцифровка, рост и развитие искусственного интеллекта и высокий спрос на обучение больших объемов наборов данных с низким контролем положительно влияют на рынок нейронных сетей глубокого обучения (DNN). Кроме того, инновации в существующем продукте расширяют прибыльные возможности для участников рынка в прогнозируемый период с 2021 по 2028 год.

С другой стороны, ожидается, что сложности при внедрении алгоритмов и интеграции оборудования, а также неосведомленность о компоненте будут препятствовать росту рынка. Нехватка квалифицированных специалистов, как ожидается, станет проблемой для рынка нейронных сетей глубокого обучения (DNN) в прогнозируемый период 2021-2028 гг.

В этом отчете о рынке нейронных сетей глубокого обучения (DNN) содержатся сведения о последних новых разработках, правилах торговли, анализе импорта и экспорта, анализе производства, оптимизации цепочки создания стоимости, доле рынка, влиянии внутренних и локальных игроков рынка, анализируются возможности с точки зрения новых источников дохода, изменений в правилах рынка, анализ стратегического роста рынка, размер рынка, рост рынка категорий, ниши приложений и доминирование, одобрение продуктов, запуски продуктов, географические расширения, технологические инновации на рынке. Чтобы получить больше информации о рынке нейронных сетей глубокого обучения (DNN), свяжитесь с Data Bridge Market Research для получения аналитического обзора, наша команда поможет вам принять обоснованное рыночное решение для достижения роста рынка.

Масштаб и размер рынка нейронных сетей глубокого обучения (DNN) на Ближнем Востоке и в Африке

Рынок нейронных сетей глубокого обучения (DNN) сегментирован на основе компонентов, приложений и конечных пользователей. Рост среди сегментов помогает вам анализировать нишевые карманы роста и стратегии выхода на рынок и определять основные области применения и разницу в ваших целевых рынках.    

  • По компонентному признаку рынок нейронных сетей глубокого обучения (DNN) сегментируется на аппаратное обеспечение, программное обеспечение и услуги.
  • По области применения рынок нейронных сетей глубокого обучения (DNN) сегментируется на распознавание изображений, распознавание речи, обработку естественного языка и интеллектуальный анализ данных.
  • По признаку конечного пользователя рынок нейронных сетей глубокого обучения (DNN) сегментируется на банковское дело, финансовые услуги и страхование (BFSI), ИТ и телекоммуникации, здравоохранение, розничную торговлю, автомобилестроение, производство, аэрокосмическую и оборонную промышленность, безопасность и другие.

Анализ рынка нейронных сетей глубокого обучения (DNN) на уровне страны на Ближнем Востоке и в Африке

Проанализирован рынок нейронных сетей глубокого обучения (DNN), а также предоставлены сведения о размерах рынка и тенденциях по странам, компонентам, приложениям и конечным пользователям, как указано выше.      

Страны, охваченные отчетом о рынке нейронных сетей глубокого обучения (DNN) на Ближнем Востоке и в Африке: Саудовская Аравия, ОАЭ, Израиль, Египет, Южная Африка, остальной Ближний Восток и Африка (MEA) как часть Ближнего Востока и Африки (MEA).

Саудовская Аравия доминирует на рынке нейронных сетей глубокого обучения (DNN) в странах Ближнего Востока и Африки благодаря их использованию в различных отраслях.

Раздел отчета по странам также содержит отдельные факторы, влияющие на рынок, и изменения в регулировании на внутреннем рынке, которые влияют на текущие и будущие тенденции рынка. Такие данные, как объемы потребления, производственные площадки и объемы, анализ импорта и экспорта, анализ ценовых тенденций, стоимость сырья, анализ цепочки создания стоимости сверху и снизу, являются одними из основных указателей, используемых для прогнозирования рыночного сценария для отдельных стран. Кроме того, при предоставлении прогнозного анализа данных по странам учитываются наличие и доступность глобальных брендов и их проблемы из-за большой или малой конкуренции со стороны местных и отечественных брендов, влияние внутренних тарифов и торговых путей.

Конкурентная среда и анализ доли рынка нейронных сетей глубокого обучения (DNN) на Ближнем Востоке и в Африке

Конкурентная среда рынка нейронных сетей глубокого обучения (DNN) содержит сведения по конкурентам. Включены сведения о компании, финансы компании, полученный доход, рыночный потенциал, инвестиции в исследования и разработки, новые рыночные инициативы, глобальное присутствие, производственные площадки и объекты, производственные мощности, сильные и слабые стороны компании, запуск продукта, широта и широта продукта, доминирование приложений. Приведенные выше данные относятся только к фокусу компаний, связанному с рынком нейронных сетей глубокого обучения (DNN).

Основными игроками, охваченными отчетом о рынке нейронных сетей глубокого обучения (DNN), являются LYUDA RESEARCH, LLC, ALPHABET INC. (google), IBM, Micron Technologies, Inc., Neural Technologies Limited, NEURODIMENSION, INC., NEURALWARE, NVIDIA CORPORATION, SKYMIND INC, SAMSUNG, Qualcomm Technologies, Inc., Intel Corporation, Amazon Web Services, Inc., Microsoft, GMDH LLC., Sensory Inc., Ward Systems Group, Inc., Xilinx Inc. и Starmind среди других.


SKU-

Get online access to the report on the World's First Market Intelligence Cloud

  • Интерактивная панель анализа данных
  • Панель анализа компании для возможностей с высоким потенциалом роста
  • Доступ аналитика-исследователя для настройки и запросов
  • Анализ конкурентов с помощью интерактивной панели
  • Последние новости, обновления и анализ тенденций
  • Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Запросить демонстрацию

Методология исследования

Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.

Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.

Доступна настройка

Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.

Часто задаваемые вопросы

The Middle East and Africa Deep Learning Neural Networks (DNNs) Market size will be worth USD 750 million by 2028.
The Middle East and Africa Deep Learning Neural Networks (DNNs) Market growth rate will be 21.30% by 2028.
The rise in popularity of Artificial intelligence (AI), high adoption of the technology owning to the enhanced processing power, learning ability, and speed of neural networks, and increase in the collection of data from users by various organizations are the growth drivers of the Middle East and Africa Deep Learning Neural Networks (DNNs) Market
The component, application and end-user are the factors on which the Middle East and Africa Deep Learning Neural Networks (DNNs) Market research is based.
The major companies in the Middle East and Africa Deep Learning Neural Networks (DNNs) Market are LYUDA RESEARCH, LLC, ALPHABET INC. (google), IBM, Micron Technologies, Inc., Neural Technologies Limited, NEURODIMENSION, INC., NEURALWARE, NVIDIA CORPORATION, SKYMIND INC, SAMSUNG, Qualcomm Technologies, Inc., Intel Corporation, Amazon Web Services, Inc., Microsoft, GMDH LLC., Sensory Inc., Ward Systems Group, Inc., Xilinx Inc., and Starmind.