Отчет об анализе размера, доли и тенденций мирового рынка предиктивного обслуживания — обзор отрасли и прогноз до 2031 года

Запрос на TOC Запрос на TOC Обратиться к аналитику Обратиться к аналитику Купить сейчас Купить сейчас Узнать перед покупкой Узнать перед покупкой Бесплатный пример отчета Бесплатный пример отчета

Отчет об анализе размера, доли и тенденций мирового рынка предиктивного обслуживания — обзор отрасли и прогноз до 2031 года

  • ICT
  • Upcoming Report
  • Nov 2024
  • Global
  • 350 Pages
  • Количество таблиц: 220
  • Количество рисунков: 60

Global Predictive Maintenance Market

Размер рынка в млрд долларов США

CAGR :  % Diagram

Chart Image USD 6.72 Billion USD 63.09 Billion 2023 2031
Diagram Прогнозируемый период
2024 –2031
Diagram Размер рынка (базовый год)
USD 6.72 Billion
Diagram Размер рынка (прогнозируемый год)
USD 63.09 Billion
Diagram CAGR
%
Diagram Основные игроки рынка
  • Microsoft
  • IBM
  • SAP
  • SAS Institute
  • Software AG

Сегментация мирового рынка предиктивного обслуживания по компонентам (решения и услуги), способу развертывания (облачные и локальные), размеру организации (крупные предприятия, малые и средние предприятия), вертикали (производство, энергетика и коммунальные услуги, транспорт, государственное управление, здравоохранение, аэрокосмическая и оборонная промышленность и другие), заинтересованным сторонам (MRO, OEM/ODM и интеграторы технологий) — тенденции отрасли и прогноз до 2031 г.

Рынок предиктивного обслуживания

Анализ рынка предиктивного обслуживания

Прогностическое обслуживание стало преобразующим подходом в промышленных операциях, использующим достижения в области аналитики данных, Интернета вещей и искусственного интеллекта для повышения надежности оборудования и сокращения простоев. В отличие от традиционного профилактического обслуживания, которое выполняется по установленным графикам, прогностическое обслуживание опирается на данные в реальном времени для оценки состояния оборудования и прогнозирования потенциальных сбоев. Этот сдвиг позволяет компаниям действовать только при необходимости, оптимизируя ресурсы и продлевая срок службы активов. Достижения в датчиках Интернета вещей и алгоритмах машинного обучения имеют решающее значение для успеха прогностического обслуживания, позволяя осуществлять непрерывный мониторинг оборудования и раннее обнаружение аномалий производительности. Датчики собирают данные в реальном времени о таких параметрах, как температура, вибрация и давление, которые затем анализируются с помощью машинного обучения для выявления закономерностей, указывающих на износ или неисправность. Облачные вычисления еще больше улучшают этот процесс, позволяя агрегировать, обрабатывать и анализировать данные в масштабе, предоставляя ценную информацию по большим паркам активов. Отрасли от производства и энергетики до транспорта внедрили прогностическое обслуживание, что снизило затраты на обслуживание и повысило эксплуатационную эффективность. По мере дальнейшего развития технологий ожидается, что предиктивное обслуживание станет более точным, масштабируемым и доступным, что откроет путь к более разумному управлению активами на основе данных в различных секторах.

Размер рынка предиктивного обслуживания

Объем мирового рынка предиктивного обслуживания оценивался в 6,72 млрд долларов США в 2023 году и, по прогнозам, достигнет 63,09 млрд долларов США к 2031 году со среднегодовым темпом роста 32,30% в прогнозируемый период с 2024 по 2031 год. Помимо таких аналитических данных о рынке, как рыночная стоимость, темпы роста, сегменты рынка, географический охват, участники рынка и рыночный сценарий, рыночный отчет, подготовленный командой Data Bridge Market Research, включает в себя углубленный экспертный анализ, анализ импорта/экспорта, анализ цен, анализ производства и потребления, а также анализ пестицидов.

Тенденции рынка предиктивного обслуживания

«Растет популярность облачных решений по предиктивному обслуживанию»

The predictive maintenance market is experiencing rapid growth, driven by the integration of IoT, AI, and big data analytics to enhance asset performance and reduce downtime. One key trend shaping this market is the rise of cloud-based predictive maintenance solutions. These solutions enable companies to collect and analyze massive amounts of equipment data in real time, often from remote locations, making it easier for organizations to predict failures before they occur. For instance, General Electric has integrated cloud-based predictive maintenance into its industrial equipment, allowing clients to monitor machinery health continuously and make data-driven maintenance decisions. This approach improves operational efficiency and reduces maintenance costs. As industries continue to adopt cloud-based platforms, the predictive maintenance market is expected to expand, with companies seeking scalable, flexible solutions to drive productivity and extend asset lifespan.

Report Scope and Predictive Maintenance Market Segmentation     

Attributes

Predictive Maintenance Key Market Insights

Segments Covered

  • By Components: Solution and Services
  • By Deployment Mode: Cloud and On-Premise
  • By Organization Size: Large Enterprises and Small and Medium-Sized Enterprises
  • By Vertical: Manufacturing, Energy and Utilities, Transportation, Government, Healthcare, Aerospace and Defense, and Others
  • By Stakeholder: MRO, OEM/ODM, and Technology Integrators

Countries Covered

U.S., Canada and Mexico in North America, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe in Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in the Asia-Pacific (APAC), Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA), Brazil, Argentina and Rest of South America as part of South America

Key Market Players

Microsoft (U.S.), IBM (U.S.), SAP (Germany), SAS Institute Inc. (U.S.), Software GmbH (Germany), Cloud Software Group, Inc. (U.S.), Hewlett Packard Enterprise Development LP (U.S.), Altair Engineering Inc. (U.S.), Splunk LLC (U.S.), Oracle (U.S.), Google (U.S.), Amazon Web Services, Inc. (U.S.), General Electric Company (U.S.), Schneider Electric (France), Hitachi, Ltd. (Japan), PTC (U.S.), and DINGO Software Pty. Ltd (Australia)

Market Opportunities

  • Increasing Integration of the Internet of Things (IoT)
  • Increasing Emphasis on Cost Reduction

Value Added Data Infosets

In addition to the market insights such as market value, growth rate, market segments, geographical coverage, market players, and market scenario, the market report curated by the Data Bridge Market Research team includes in-depth expert analysis, import/export analysis, pricing analysis, production consumption analysis, and pestle analysis.

Predictive Maintenance Market Definition

Predictive maintenance software systems are used to monitor the performance and condition of equipment or machinery during operation. This software leverages advanced techniques to schedule maintenance before any failures occur, ensuring equipment reliability. Predictive maintenance software has applications across various fields, including detecting three-phase power imbalances from harmonic distortion, identifying motor capacitance spikes, and pinpointing overheating issues due to faulty bearings.

Predictive Maintenance Market Dynamics

Drivers

  • Growing Adoption of Emerging Technologies to Extract Valuable Insights

Continuous advancements in big data, machine-to-machine (M2M) communication, and artificial intelligence (AI) are driving significant growth in the predictive maintenance market by enabling deeper insights from vast amounts of data generated by IoT devices. These devices collect enormous data from sensors, cameras, and other connected sources, which must be transformed into actionable information to hold real value. Techniques in big data processing and data visualization empower users to derive insights through batch processing and offline analysis, while real-time data interpretation increasingly relies on automation for scalability. AI plays a critical role by analyzing the massive volumes of data generated across the IoT ecosystem, converting it into valuable insights that organizations can use for timely decision-making. By integrating AI into their analytics models, businesses can automate data interpretation and gain real-time, actionable insights from IoT data streams, creating a powerful driver for predictive maintenance solutions across industries.

  • Growing Number of Industries Worldwide Driving Higher Demand and Supply

Растущее число отраслей по всему миру подпитывает больший спрос и предложение, особенно в развивающихся странах, где индустриализация стремительно ускоряется. Поскольку такие страны, как Индия, Китай и Бразилия, продолжают расширять свои производственные и технологические секторы, растет потребность в передовых решениях, таких как предиктивное обслуживание. Например, в Индии автомобильная и обрабатывающая промышленность внедряют технологии предиктивного обслуживания для повышения эффективности работы и сокращения простоев, тем самым стимулируя спрос на такие решения. Этот всплеск промышленной активности в развивающихся странах является значительным драйвером рынка, поскольку компании ищут масштабируемые, экономически эффективные инструменты для управления растущей инфраструктурой и обеспечения надежной работы. Расширенная промышленная база в этих регионах приводит к увеличению спроса на программное обеспечение и услуги предиктивного обслуживания, создавая существенные возможности для поставщиков для удовлетворения этой растущей потребности.

Возможности

  • Растущая интеграция Интернета вещей (IoT)

Интеграция Интернета вещей (IoT) в решения по предиктивному обслуживанию значительно расширила возможности рынка, обеспечив непрерывный мониторинг оборудования и машин в режиме реального времени. Устройства IoT, такие как интеллектуальные датчики и интеллектуальные счетчики, собирают огромные объемы данных о таких параметрах, как температура, вибрация, давление и влажность. Затем эти данные анализируются с помощью передовых алгоритмов и моделей машинного обучения для прогнозирования потенциальных отказов оборудования до того, как они произойдут. Например, в обрабатывающей промышленности системы предиктивного обслуживания с поддержкой IoT могут обнаруживать аномальные вибрации в оборудовании, предупреждая бригады по техническому обслуживанию о необходимости проведения ремонта до того, как отказ нарушит производство. Растущее внедрение IoT в таких отраслях, как автомобилестроение, энергетика и производство, создало растущий рынок решений по предиктивному обслуживанию на основе IoT. Этот спрос еще больше усиливается способностью IoT сокращать незапланированные простои, продлевать срок службы оборудования и минимизировать затраты на ремонт, позиционируя IoT как ключевой фактор рынка предиктивного обслуживания. По мере того, как все больше предприятий внедряют устройства Интернета вещей и подключенные системы, потребность в надежных, масштабируемых решениях по предиктивному техническому обслуживанию будет продолжать расти, что представляет собой выгодную возможность роста для поставщиков технологий в этой сфере.

  • Растущее внимание к сокращению затрат

Прогностическое обслуживание представляет собой привлекательную возможность сокращения расходов для предприятий за счет минимизации непредвиденных отказов оборудования, оптимизации запасов запасных частей и сокращения затрат на рабочую силу. Используя основанные на данных знания для прогнозирования и предотвращения поломок оборудования, предприятия могут избежать дорогостоящих простоев и дорогостоящего ремонта, часто связанного с непредвиденными отказами. Например, в транспортном секторе системы прогностического обслуживания могут прогнозировать, когда изнашиваются детали двигателя транспортного средства, что позволяет компаниям планировать ремонт в удобное время и предотвращать дорогостоящие, разрушительные поломки. Аналогичным образом, в производстве прогностическое обслуживание помогает оптимизировать запасы запасных частей, гарантируя, что детали заказываются только при необходимости, избегая избыточного или недостаточного запаса. Более того, оно снижает потребность в бригадах аварийного ремонта и сверхурочной работе, поскольку обслуживание можно планировать в непиковые часы, тем самым экономя на эксплуатационных расходах. Этот потенциал экономии затрат является значительной рыночной возможностью, поскольку компании во всех отраслях все чаще ищут способы сокращения эксплуатационных расходов при сохранении высокого уровня эффективности и производительности. Благодаря этим финансовым преимуществам спрос на решения по предиктивному техническому обслуживанию продолжает расти, что открывает широкие возможности для роста для поставщиков решений на рынке.

Ограничения/Проблемы

  • Нехватка квалифицированной рабочей силы

Внедрение технологий Интернета вещей на основе ИИ и современных программных систем требует квалифицированных рабочих, обученных работе и управлению этими новыми и модернизированными системами. Однако отрасли сталкиваются с нехваткой высококвалифицированных специалистов с необходимым опытом. Поскольку мировые производители внедряют системы предиктивного обслуживания, спрос на квалифицированную рабочую силу растет. Компаниям необходимо развивать экспертные знания в таких областях, как кибербезопасность , сетевое взаимодействие и эксплуатация, чтобы эффективно использовать данные Интернета вещей для прогнозирования проблем, предотвращения сбоев, оптимизации операций и улучшения разработки продуктов. Кроме того, ожидается, что интеграция ИИ и машинного обучения (ML) в системы Интернета вещей будет играть ключевую роль в снижении эксплуатационных расходов. По мере внедрения ИИ в Интернет вещей будет расти потребность в командах аналитиков данных, которые специализируются на обработке и интерпретации огромных объемов данных, генерируемых устройствами Интернета вещей, для предоставления действенных идей.

  • Необходимость регулярного обслуживания и обновления системы

Высокие затраты и инвестиционные требования представляют собой значительную проблему на рынке Predictive Maintenance, поскольку организации часто сталкиваются со значительными финансовыми барьерами при внедрении передовых решений Predictive Maintenance. Интеграция сложных технологий, таких как биометрические системы и искусственный интеллект , может повлечь за собой существенные первоначальные инвестиции как в программное обеспечение, так и в оборудование. Например, развертывание комплексной системы Predictive Maintenance в организации может стоить сотни тысяч долларов, что может быть непомерно для небольших предприятий или тех, кто работает с ограниченным бюджетом. Кроме того, постоянное обслуживание и обновления этих систем могут увеличить финансовое бремя, затрудняя для предприятий эффективное распределение ресурсов. В результате высокие затраты, связанные с технологиями Predictive Maintenance, представляют собой значительную рыночную проблему, которую поставщики должны преодолеть, чтобы способствовать более широкому внедрению в различных секторах.

В этом отчете о рынке содержатся сведения о последних новых разработках, правилах торговли, анализе импорта-экспорта, анализе производства, оптимизации цепочки создания стоимости, доле рынка, влиянии внутренних и локальных игроков рынка, анализируются возможности с точки зрения новых источников дохода, изменений в правилах рынка, анализ стратегического роста рынка, размер рынка, рост рынка категорий, ниши приложений и доминирование, одобрения продуктов, запуски продуктов, географические расширения, технологические инновации на рынке. Чтобы получить больше информации о рынке, свяжитесь с Data Bridge Market Research для получения аналитического обзора, наша команда поможет вам принять обоснованное рыночное решение для достижения роста рынка.

Масштаб рынка предиктивного обслуживания

Рынок сегментирован на основе компонента, режима развертывания, размера организации, вертикали и заинтересованных сторон. Рост среди этих сегментов поможет вам проанализировать сегменты с незначительным ростом в отраслях и предоставить пользователям ценный обзор рынка и рыночные идеи, которые помогут им принимать стратегические решения для определения основных рыночных приложений.

Компонент

  • Услуга

Системная интеграция

  • Поддержка и обслуживание
  • Консалтинг

 Режим развертывания

  • Локально
  • Облако
    • Публичное облако
    • Частное облако
    • Гибридное облако

 Размер организации

  • Крупные предприятия
  • Малые и средние предприятия (МСП)

 Вертикальный

  • Правительство и оборона
  • Производство
  • Энергетика и коммунальные услуги
  • Транспорт и логистика
  • Здравоохранение и науки о жизни

Заинтересованная сторона

  • ТОиР
  • OEM/ODM
  • Интеграторы технологий

 Региональный анализ рынка предиктивного обслуживания

Рынок анализируется, и предоставляются сведения о его размере и тенденциях по компонентам, режиму развертывания, размеру организации, вертикали и заинтересованным сторонам, как указано выше.

The countries covered in the market report are U.S., Canada, Mexico in North America, Germany, Sweden, Poland, Denmark, Italy, U.K., France, Spain, Netherland, Belgium, Switzerland, Turkey, Russia, Rest of Europe in Europe, Japan, China, India, South Korea, New Zealand, Vietnam, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in Asia-Pacific (APAC), Brazil, Argentina, Rest of South America as a part of South America, U.A.E, Saudi Arabia, Oman, Qatar, Kuwait, South Africa, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA).

North America is expected to dominate the predictive maintenance market, driven by significant technological advancements in the region. The increasing number of players offering prognostic maintenance solutions is also anticipated to contribute to the market's growth. As more businesses adopt these solutions, the demand for predictive maintenance technologies will rise, further boosting the market. Additionally, the presence of leading companies and continuous innovations in the region will support continued market expansion.

Asia Pacific is projected to experience steady growth in the adoption of predictive maintenance, driven by emerging economies in the region. Technological advancements and the increasing need for businesses to optimize asset performance through efficient maintenance strategies are key factors fueling this growth. As industries strive to enhance productivity and reduce downtime, predictive maintenance technologies are becoming essential. Moreover, the region's focus on embracing cutting-edge innovations will further accelerate the integration of predictive maintenance solutions.

The country section of the report also provides individual market impacting factors and changes in market regulation that impact the current and future trends of the market. Data points such as down-stream and upstream value chain analysis, technical trends and porter's five forces analysis, case studies are some of the pointers used to forecast the market scenario for individual countries. Also, the presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of domestic tariffs and trade routes are considered while providing forecast analysis of the country data.

Predictive Maintenance Market Share

The market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies' focus related to market.

Predictive Maintenance Market Leaders Operating in the Market Are:

  • Microsoft (U.S.)
  • IBM (США)
  • САП (Германия)
  • Институт SAS Inc. (США)
  • Software GmbH (Германия)
  • Cloud Software Group, Inc. (США)
  • Hewlett Packard Enterprise Development LP (США)
  • Altair Engineering Inc. (США)
  • Splunk LLC (США)
  • Оракул (США)
  • Google (США)
  • Amazon Web Services, Inc. (США)
  • General Electric Company (США)
  • Schneider Electric (Франция)
  • Hitachi, Ltd. (Япония)
  • PTC (США)
  • DINGO Software Pty. Ltd (Австралия)

Последние разработки на рынке предиктивного обслуживания

  • В августе 2023 года американская компания Honeywell выпустила на рынок датчики Versatilis — решение, предназначенное для мониторинга состояния вращающегося оборудования в различных отраслях промышленности.
  • В июне 2023 года Accenture приобрела Nextira, ведущего партнера Amazon Web Services (AWS), чтобы расширить свои инженерные возможности в Accenture Cloud First. Это приобретение позволит Accenture предоставлять клиентам прогнозную аналитику, облачные инновации и иммерсивные возможности, используя решения AWS для предоставления комплексных облачных возможностей
  • В мае 2023 года Cisco Systems и NTT, поставщик услуг телекоммуникационной инфраструктуры, объединились для разработки решений, которые обеспечивают аналитику данных в реальном времени, улучшенное принятие решений и повышенную безопасность. Их сотрудничество сосредоточено на предиктивном обслуживании, управлении цепочками поставок и отслеживании активов.
  • В июне 2022 года компания Siemens, базирующаяся в Великобритании, приобрела компанию Senseye, чтобы усилить свой портфель услуг в области предиктивного обслуживания и анализа активов.
  • В июне 2022 года компания Microsoft со штаб-квартирой в США объединилась с компанией Schneider Electric со штаб-квартирой во Франции с целью внедрения современных решений по техническому обслуживанию, которые улучшают управление энергопотреблением, производительность активов и эффективность эксплуатации.
  • В июле 2021 года Schneider Electric запустила EcoStruxure TriconexTM Safety View — новаторское программное обеспечение для управления обходом и сигнализацией, имеющее двойную сертификацию по безопасности и кибербезопасности. Это решение позволяет операторам контролировать состояние обхода и критические сигналы тревоги для поддержания безопасной работы в условиях высокого риска.
  • В мае 2021 года институт SAS выпустил SAS Viya — мощную облачную платформу для управления данными и аналитики, призванную способствовать успеху на основе данных с помощью новых интегрированных решений для операций с данными.


SKU-

Get online access to the report on the World's First Market Intelligence Cloud

  • Интерактивная панель анализа данных
  • Панель анализа компании для возможностей с высоким потенциалом роста
  • Доступ аналитика-исследователя для настройки и запросов
  • Анализ конкурентов с помощью интерактивной панели
  • Последние новости, обновления и анализ тенденций
  • Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Запросить демонстрацию

Методология исследования

Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.

Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.

Доступна настройка

Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.

Часто задаваемые вопросы

The market is segmented based on Segmentation, By Components (Solution and Services), Deployment Mode (Cloud and On-Premise), Organization Size (Large Enterprises and Small and Medium-Sized Enterprises), Vertical (Manufacturing, Energy and Utilities, Transportation, Government, Healthcare, Aerospace and Defense, and Others), Stakeholder (MRO, OEM/ODM, and Technology Integrators) – Industry Trends and Forecast to 2031 .
The Global Predictive Maintenance Market size was valued at USD 6.72 USD Billion in 2023.
The Global Predictive Maintenance Market is projected to grow at a CAGR of 32.3% during the forecast period of 2024 to 2031.
The major players operating in the market include Microsoft, IBM, SAP, SAS Institute , Software AG, TIBCO Software , Hewlett Packard Enterprise Development LP, Altair Engineering , Splunk , Oracle, Google, Amazon Web Services , General Electric, Schneider Electric, Hitachi , PTC, RapidMiner , Operational Excellence Group Ltd, Dingo, Factory5 .
The market report covers data from the U.S., Canada and Mexico in North America, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe in Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in the Asia-Pacific (APAC), Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA), Brazil, Argentina and Rest of South America as part of South America.
Testimonial