Global Predictive Maintenance Market
Размер рынка в млрд долларов США
CAGR :
%

![]() |
2024 –2031 |
![]() |
USD 6.72 Billion |
![]() |
USD 63.09 Billion |
![]() |
|
![]() |
|
>Global Predictive Maintenance Market Segmentation, By Components (Solution and Services), Deployment Mode (Cloud and On-Premise), Organization Size (Large Enterprises and Small and Medium-Sized Enterprises), Vertical (Manufacturing, Energy and Utilities, Transportation, Government, Healthcare, Aerospace and Defense, and Others), Stakeholder (MRO, OEM/ODM, and Technology Integrators) – Industry Trends and Forecast to 2031
Predictive Maintenance Market Analysis
Predictive maintenance has emerged as a transformative approach in industrial operations, leveraging advancements in data analytics, IoT, and AI to improve equipment reliability and reduce downtime. Unlike traditional preventive maintenance, which follows set schedules, predictive maintenance relies on real-time data to assess equipment health and forecast potential failures. This shift enables companies to act only when necessary, optimizing resources and extending asset life. Advancements in IoT sensors and machine learning algorithms are crucial to predictive maintenance's success, allowing continuous monitoring of equipment and early detection of performance anomalies. Sensors gather real-time data on parameters such as temperature, vibration, and pressure, which is then analyzed using machine learning to identify patterns indicating wear or malfunction. Cloud computing further enhances this process, enabling data to be aggregated, processed, and analyzed at scale, providing valuable insights across large fleets of assets. Industries from manufacturing and energy to transportation have adopted predictive maintenance, seeing reduced maintenance costs and enhanced operational efficiency. As technologies continue to evolve, predictive maintenance is expected to become more accurate, scalable, and accessible, paving the way for smarter, data-driven asset management across diverse sectors.
Predictive Maintenance Market Size
The global predictive maintenance market size was valued at USD 6.72 billion in 2023 and is projected to reach USD 63.09 billion by 2031, with a CAGR of 32.30% during the forecast period of 2024 to 2031. In addition to the market insights such as market value, growth rate, market segments, geographical coverage, market players, and market scenario, the market report curated by the Data Bridge Market Research team includes in-depth expert analysis, import/export analysis, pricing analysis, production consumption analysis, and pestle analysis.
Predictive Maintenance Market Trends
“Rise of Cloud-Based Predictive Maintenance Solutions”
Рынок предиктивного обслуживания переживает стремительный рост, обусловленный интеграцией IoT, AI и аналитики больших данных для повышения производительности активов и сокращения простоев. Одной из ключевых тенденций, формирующих этот рынок, является рост облачных решений предиктивного обслуживания. Эти решения позволяют компаниям собирать и анализировать огромные объемы данных об оборудовании в режиме реального времени, часто из удаленных мест, что упрощает организациям прогнозирование сбоев до их возникновения. Например, General Electric интегрировала облачное предиктивное обслуживание в свое промышленное оборудование, что позволяет клиентам непрерывно контролировать состояние оборудования и принимать решения по обслуживанию на основе данных. Такой подход повышает эффективность работы и снижает затраты на обслуживание. Поскольку отрасли продолжают внедрять облачные платформы, ожидается, что рынок предиктивного обслуживания будет расширяться, поскольку компании ищут масштабируемые, гибкие решения для повышения производительности и продления срока службы активов.
Область применения отчета и сегментация рынка предиктивного обслуживания
Атрибуты |
Ключевые аспекты рынка предиктивного обслуживания |
Охваченные сегменты |
|
Страны, охваченные |
США, Канада и Мексика в Северной Америке, Германия, Франция, Великобритания, Нидерланды, Швейцария, Бельгия, Россия, Италия, Испания, Турция, Остальная Европа в Европе, Китай, Япония, Индия, Южная Корея, Сингапур, Малайзия, Австралия, Таиланд, Индонезия, Филиппины, Остальная часть Азиатско-Тихоокеанского региона (APAC) в Азиатско-Тихоокеанском регионе (APAC), Саудовская Аравия, ОАЭ, Южная Африка, Египет, Израиль, Остальной Ближний Восток и Африка (MEA) как часть Ближнего Востока и Африки (MEA), Бразилия, Аргентина и Остальная часть Южной Америки как часть Южной Америки |
Ключевые игроки рынка |
Microsoft (США), IBM (США), SAP (Германия), SAS Institute Inc. (США), Software GmbH (Германия), Cloud Software Group, Inc. (США), Hewlett Packard Enterprise Development LP (США), Altair Engineering Inc. (США), Splunk LLC (США), Oracle (США), Google (США), Amazon Web Services, Inc. (США), General Electric Company (США), Schneider Electric (Франция), Hitachi, Ltd. (Япония), PTC (США) и DINGO Software Pty. Ltd (Австралия) |
Возможности рынка |
|
Информационные наборы данных с добавленной стоимостью |
Помимо таких рыночных данных, как рыночная стоимость, темпы роста, сегменты рынка, географический охват, участники рынка и рыночный сценарий, рыночный отчет, подготовленный командой Data Bridge Market Research, включает в себя углубленный экспертный анализ, анализ импорта/экспорта, анализ цен, анализ потребления продукции и анализ пестицидов. |
Определение рынка предиктивного обслуживания
Системы программного обеспечения для предиктивного обслуживания используются для мониторинга производительности и состояния оборудования или машин во время работы. Это программное обеспечение использует передовые методы для планирования обслуживания до возникновения каких-либо сбоев, обеспечивая надежность оборудования. Программное обеспечение для предиктивного обслуживания применяется в различных областях, включая обнаружение трехфазного дисбаланса мощности из-за гармонических искажений, определение пиков емкости двигателя и выявление проблем перегрева из-за неисправных подшипников.
Динамика рынка предиктивного обслуживания
Драйверы
- Растущее внедрение новых технологий для извлечения ценной информации
Непрерывный прогресс в области больших данных , межмашинного взаимодействия (M2M) и искусственного интеллекта (ИИ) способствует значительному росту рынка предиктивного обслуживания, обеспечивая более глубокое понимание огромных объемов данных, генерируемых устройствами IoT. Эти устройства собирают огромные данные с датчиков, камер и других подключенных источников, которые необходимо преобразовать в полезную информацию, чтобы иметь реальную ценность. Методы обработки больших данных и визуализации данных позволяют пользователям получать информацию с помощью пакетной обработки и автономного анализа, в то время как интерпретация данных в реальном времени все больше полагается на автоматизацию для масштабируемости. ИИ играет важную роль, анализируя огромные объемы данных, генерируемых в экосистеме IoT, преобразуя их в ценные идеи, которые организации могут использовать для своевременного принятия решений. Интегрируя ИИ в свои аналитические модели, предприятия могут автоматизировать интерпретацию данных и получать в реальном времени полезные идеи из потоков данных IoT, создавая мощный драйвер для решений предиктивного обслуживания в различных отраслях.
- Растущее число отраслей по всему миру обуславливает более высокий спрос и предложение
Растущее число отраслей по всему миру подпитывает больший спрос и предложение, особенно в развивающихся странах, где индустриализация стремительно ускоряется. Поскольку такие страны, как Индия, Китай и Бразилия, продолжают расширять свои производственные и технологические секторы, растет потребность в передовых решениях, таких как предиктивное обслуживание. Например, в Индии автомобильная и обрабатывающая промышленность внедряют технологии предиктивного обслуживания для повышения эффективности работы и сокращения простоев, тем самым стимулируя спрос на такие решения. Этот всплеск промышленной активности в развивающихся странах является значительным драйвером рынка, поскольку компании ищут масштабируемые, экономически эффективные инструменты для управления растущей инфраструктурой и обеспечения надежной работы. Расширенная промышленная база в этих регионах приводит к увеличению спроса на программное обеспечение и услуги предиктивного обслуживания, создавая существенные возможности для поставщиков для удовлетворения этой растущей потребности.
Возможности
- Растущая интеграция Интернета вещей (IoT)
Интеграция Интернета вещей (IoT) в решения по предиктивному обслуживанию значительно расширила возможности рынка, обеспечив непрерывный мониторинг оборудования и машин в режиме реального времени. Устройства IoT, такие как интеллектуальные датчики и интеллектуальные счетчики, собирают огромные объемы данных о таких параметрах, как температура, вибрация, давление и влажность. Затем эти данные анализируются с помощью передовых алгоритмов и моделей машинного обучения для прогнозирования потенциальных отказов оборудования до того, как они произойдут. Например, в обрабатывающей промышленности системы предиктивного обслуживания с поддержкой IoT могут обнаруживать аномальные вибрации в оборудовании, предупреждая бригады по техническому обслуживанию о необходимости проведения ремонта до того, как отказ нарушит производство. Растущее внедрение IoT в таких отраслях, как автомобилестроение, энергетика и производство, создало растущий рынок решений по предиктивному обслуживанию на основе IoT. Этот спрос еще больше усиливается способностью IoT сокращать незапланированные простои, продлевать срок службы оборудования и минимизировать затраты на ремонт, позиционируя IoT как ключевой фактор рынка предиктивного обслуживания. По мере того, как все больше предприятий внедряют устройства Интернета вещей и подключенные системы, потребность в надежных, масштабируемых решениях по предиктивному техническому обслуживанию будет продолжать расти, что представляет собой выгодную возможность роста для поставщиков технологий в этой сфере.
- Растущее внимание к сокращению затрат
Прогностическое обслуживание представляет собой привлекательную возможность сокращения расходов для предприятий за счет минимизации непредвиденных отказов оборудования, оптимизации запасов запасных частей и сокращения затрат на рабочую силу. Используя основанные на данных знания для прогнозирования и предотвращения поломок оборудования, предприятия могут избежать дорогостоящих простоев и дорогостоящего ремонта, часто связанного с непредвиденными отказами. Например, в транспортном секторе системы прогностического обслуживания могут прогнозировать, когда изнашиваются детали двигателя транспортного средства, что позволяет компаниям планировать ремонт в удобное время и предотвращать дорогостоящие, разрушительные поломки. Аналогичным образом, в производстве прогностическое обслуживание помогает оптимизировать запасы запасных частей, гарантируя, что детали заказываются только при необходимости, избегая избыточного или недостаточного запаса. Более того, оно снижает потребность в бригадах аварийного ремонта и сверхурочной работе, поскольку обслуживание можно планировать в непиковые часы, тем самым экономя на эксплуатационных расходах. Этот потенциал экономии затрат является значительной рыночной возможностью, поскольку компании во всех отраслях все чаще ищут способы сокращения эксплуатационных расходов при сохранении высокого уровня эффективности и производительности. Благодаря этим финансовым преимуществам спрос на решения по предиктивному техническому обслуживанию продолжает расти, что открывает широкие возможности для роста для поставщиков решений на рынке.
Ограничения/Проблемы
- Нехватка квалифицированной рабочей силы
Внедрение технологий Интернета вещей на основе ИИ и современных программных систем требует квалифицированных рабочих, обученных работе и управлению этими новыми и модернизированными системами. Однако отрасли сталкиваются с нехваткой высококвалифицированных специалистов с необходимым опытом. Поскольку мировые производители внедряют системы предиктивного обслуживания, спрос на квалифицированную рабочую силу растет. Компаниям необходимо развивать экспертные знания в таких областях, как кибербезопасность , сетевое взаимодействие и эксплуатация, чтобы эффективно использовать данные Интернета вещей для прогнозирования проблем, предотвращения сбоев, оптимизации операций и улучшения разработки продуктов. Кроме того, ожидается, что интеграция ИИ и машинного обучения (ML) в системы Интернета вещей будет играть ключевую роль в снижении эксплуатационных расходов. По мере внедрения ИИ в Интернет вещей будет расти потребность в командах аналитиков данных, которые специализируются на обработке и интерпретации огромных объемов данных, генерируемых устройствами Интернета вещей, для предоставления действенных идей.
- Необходимость регулярного обслуживания и обновления системы
Высокие затраты и инвестиционные требования представляют собой значительную проблему на рынке Predictive Maintenance, поскольку организации часто сталкиваются со значительными финансовыми барьерами при внедрении передовых решений Predictive Maintenance. Интеграция сложных технологий, таких как биометрические системы и искусственный интеллект , может повлечь за собой существенные первоначальные инвестиции как в программное обеспечение, так и в оборудование. Например, развертывание комплексной системы Predictive Maintenance в организации может стоить сотни тысяч долларов, что может быть непомерно для небольших предприятий или тех, кто работает с ограниченным бюджетом. Кроме того, постоянное обслуживание и обновления этих систем могут увеличить финансовое бремя, затрудняя для предприятий эффективное распределение ресурсов. В результате высокие затраты, связанные с технологиями Predictive Maintenance, представляют собой значительную рыночную проблему, которую поставщики должны преодолеть, чтобы способствовать более широкому внедрению в различных секторах.
В этом отчете о рынке содержатся сведения о последних новых разработках, правилах торговли, анализе импорта-экспорта, анализе производства, оптимизации цепочки создания стоимости, доле рынка, влиянии внутренних и локальных игроков рынка, анализируются возможности с точки зрения новых источников дохода, изменений в правилах рынка, анализ стратегического роста рынка, размер рынка, рост рынка категорий, ниши приложений и доминирование, одобрения продуктов, запуски продуктов, географические расширения, технологические инновации на рынке. Чтобы получить больше информации о рынке, свяжитесь с Data Bridge Market Research для получения аналитического обзора, наша команда поможет вам принять обоснованное рыночное решение для достижения роста рынка.
Масштаб рынка предиктивного обслуживания
Рынок сегментирован на основе компонента, режима развертывания, размера организации, вертикали и заинтересованных сторон. Рост среди этих сегментов поможет вам проанализировать сегменты с незначительным ростом в отраслях и предоставить пользователям ценный обзор рынка и рыночные идеи, которые помогут им принимать стратегические решения для определения основных рыночных приложений.
Компонент
- Решения
- Интегрированный
- Автономный
- Услуга
- Управляемые услуги
- Профессиональные услуги
- Системная интеграция
- Поддержка и обслуживание
- Консалтинг
Системная интеграция
- Поддержка и обслуживание
- Консалтинг
Режим развертывания
- Локально
- Облако
- Публичное облако
- Частное облако
- Гибридное облако
Размер организации
- Крупные предприятия
- Малые и средние предприятия (МСП)
Вертикальный
- Правительство и оборона
- Производство
- Энергетика и коммунальные услуги
- Транспорт и логистика
- Здравоохранение и науки о жизни
Заинтересованная сторона
- ТОиР
- OEM/ODM
- Интеграторы технологий
Региональный анализ рынка предиктивного обслуживания
Рынок анализируется, и предоставляются сведения о его размере и тенденциях по компонентам, режиму развертывания, размеру организации, вертикали и заинтересованным сторонам, как указано выше.
В отчете о рынке рассматриваются следующие страны: США, Канада, Мексика в Северной Америке, Германия, Швеция, Польша, Дания, Италия, Великобритания, Франция, Испания, Нидерланды, Бельгия, Швейцария, Турция, Россия, остальные страны Европы в Европе, Япония, Китай, Индия, Южная Корея, Новая Зеландия, Вьетнам, Австралия, Сингапур, Малайзия, Таиланд, Индонезия, Филиппины, остальные страны Азиатско-Тихоокеанского региона (APAC) в Азиатско-Тихоокеанском регионе (APAC), Бразилия, Аргентина, остальные страны Южной Америки как часть Южной Америки, ОАЭ, Саудовская Аравия, Оман, Катар, Кувейт, Южная Африка, остальные страны Ближнего Востока и Африки (MEA) как часть Ближнего Востока и Африки (MEA).
Ожидается, что Северная Америка будет доминировать на рынке предиктивного обслуживания, что обусловлено значительным технологическим прогрессом в регионе. Также ожидается, что растущее число игроков, предлагающих решения по предиктивному обслуживанию, внесет свой вклад в рост рынка. По мере того, как все больше компаний будут внедрять эти решения, спрос на технологии предиктивного обслуживания будет расти, что еще больше подстегнет рынок. Кроме того, присутствие ведущих компаний и постоянные инновации в регионе будут поддерживать дальнейшее расширение рынка.
Прогнозируется, что в Азиатско-Тихоокеанском регионе будет наблюдаться устойчивый рост внедрения предиктивного обслуживания, обусловленный развивающимися экономиками в регионе. Технологические достижения и растущая потребность предприятий в оптимизации производительности активов посредством эффективных стратегий обслуживания являются ключевыми факторами, подпитывающими этот рост. Поскольку отрасли стремятся повысить производительность и сократить время простоя, технологии предиктивного обслуживания становятся необходимыми. Более того, фокусирование региона на внедрении передовых инноваций еще больше ускорит интеграцию решений предиктивного обслуживания.
Раздел отчета по странам также содержит отдельные факторы, влияющие на рынок, и изменения в регулировании рынка, которые влияют на текущие и будущие тенденции рынка. Такие данные, как анализ цепочки создания стоимости сверху и снизу, технические тенденции и анализ пяти сил Портера, тематические исследования, являются некоторыми из указателей, используемых для прогнозирования рыночного сценария для отдельных стран. Кроме того, при предоставлении прогнозного анализа данных по странам учитываются наличие и доступность глобальных брендов и их проблемы из-за большой или малой конкуренции со стороны местных и отечественных брендов, влияние внутренних тарифов и торговых путей.
Доля рынка предиктивного обслуживания
Конкурентная среда рынка содержит сведения о конкурентах. Включены сведения о компании, ее финансах, полученном доходе, рыночном потенциале, инвестициях в исследования и разработки, новых рыночных инициативах, глобальном присутствии, производственных площадках и объектах, производственных мощностях, сильных и слабых сторонах компании, запуске продукта, широте и широте продукта, доминировании приложений. Приведенные выше данные касаются только фокуса компаний на рынке.
Лидерами рынка предиктивного технического обслуживания, работающими на рынке, являются:
- Майкрософт (США)
- IBM (U.S.)
- SAP (Germany)
- SAS Institute Inc. (U.S.)
- Software GmbH (Germany)
- Cloud Software Group, Inc. (U.S.)
- Hewlett Packard Enterprise Development LP (U.S.)
- Altair Engineering Inc. (U.S.)
- Splunk LLC (U.S.)
- Oracle (U.S.)
- Google (U.S.)
- Amazon Web Services, Inc. (U.S.)
- General Electric Company (U.S.)
- Schneider Electric (France)
- Hitachi, Ltd. (Japan)
- PTC (U.S.)
- DINGO Software Pty. Ltd (Australia)
Latest Developments in Predictive Maintenance Market
- In August 2023, Honeywell, a U.S.-based company, launched its Versatilis transmitters, a solution designed for condition-based monitoring of rotating equipment across various industries
- In June 2023, Accenture acquired Nextira, a premier Amazon Web Services (AWS) partner, to enhance its engineering capabilities within Accenture Cloud First. This acquisition will enable Accenture to deliver predictive analytics, cloud-native innovations, and immersive experiences to clients, leveraging AWS solutions to provide comprehensive cloud capabilities
- In May 2023, Cisco Systems and NTT, a telecom infrastructure services provider, partnered to develop solutions that deliver real-time data insights, improved decision-making, and enhanced security. Their collaboration focuses on predictive maintenance, supply chain management, and asset tracking
- In June 2022, Siemens, based in the U.K., acquired Senseye to strengthen its portfolio in predictive maintenance and asset intelligence
- In June 2022, Microsoft, headquartered in the U.S., partnered with Schneider Electric, based in France, to introduce advanced maintenance solutions that enhance energy management, asset performance, and operational efficiency
- In July 2021, Schneider Electric launched EcoStruxure TriconexTM Safety View, a pioneering software for bypass and alarm management that is dual-certified for safety and cybersecurity. This solution allows operators to monitor bypass status and critical alarms to maintain safe operations under high-risk conditions
- In May 2021, SAS Institute released SAS Viya, its powerful cloud-native platform for data management and analytics, aimed at empowering data-driven success through new integrated solutions for data operations
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Интерактивная панель анализа данных
- Панель анализа компании для возможностей с высоким потенциалом роста
- Доступ аналитика-исследователя для настройки и запросов
- Анализ конкурентов с помощью интерактивной панели
- Последние новости, обновления и анализ тенденций
- Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Методология исследования
Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.
Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.
Доступна настройка
Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.