Global Natural Language Processing Nlp Healthcare Life Sciences Market
Размер рынка в млрд долларов США
CAGR :
%

![]() |
2024 –2031 |
![]() |
USD 2.11 Billion |
![]() |
USD 8.48 Billion |
![]() |
|
![]() |
|
Глобальный рынок обработки естественного языка NLP в здравоохранении и естественных науках в 2023 году оценивался в 2,11 млрд долларов США. Прогнозируется, что размер рынка будет расти со среднегодовым темпом роста 19% и достигнет 8,48 млрд долларов США к 2031 году.
Глобальный рынок обработки естественного языка NLP в здравоохранении и естественных науках – обзор отрасли
Сектор здравоохранения и естественных наук производит огромный объем данных, включая электронные медицинские карты, отчеты о клинических испытаниях, данные исследований и отчеты пациентов. По данным Всемирного экономического форума, отрасль здравоохранения генерирует более 30% данных, генерируемых во всем мире, большая часть которых остается неиспользованной. Внедрение обработки естественного языка (NLP) в сектор здравоохранения играет огромную роль в обработке медицинских данных, что приводит к инновациям и изобретениям, которые потенциально могут стать основой для открытия методов лечения и терапии, лекарств и медикаментов, которые могут оказаться эффективным средством от различных заболеваний. NLP полностью преобразило отрасль здравоохранения и естественных наук своим комплексным подходом, ориентированным на анализ данных. Теперь нет ни одной записи в области здравоохранения и естественных наук, которая не использовалась бы благодаря динамическому анализу неструктурированных данных NLP, анализу настроений, распознаванию именованных сущностей и открытию лекарств для извлечения ценных идей, которые помогают радикально улучшить взаимодействие с пациентами, и, как следствие, глобальный рынок NLP в области здравоохранения и естественных наук расширяется.
Отчет по исследованию рынка Data Bridge Market содержит сведения о последних событиях, правилах торговли, доле рынка, тенденциях рынка на основе сегментации и регионального анализа, влиянии участников рынка, анализе возможностей с точки зрения новых источников дохода, правилах рынка, стратегическом анализе роста рынка, размере рынка, росте рынка по категориям, нишах приложений и доминировании, одобрении продуктов, запуске продуктов, географическом расширении и технологических инновациях на рынке. Чтобы получить больше информации о рынке, свяжитесь с командой экспертов-аналитиков Data Bridge Market Research. Наша команда поможет вам принять обоснованные рыночные решения для достижения роста бизнеса.
Глобальный размер рынка обработки естественного языка NLP в здравоохранении и естественных науках
Отчет о рынке здравоохранения и наук о жизни NLP. Подробности показателей |
|
Прогнозируемый период |
2024-2031 |
Базовый год |
2023 |
Исторический год |
2022 (настраиваемый 2016-2021) |
Единица измерения |
млрд долларов США |
Указатель данных |
рыночная аналитика рыночная стоимость, темпы роста, сегменты рынка, географический охват, участники рынка и рыночный сценарий, углубленный экспертный анализ, эпидемиология пациентов, анализ воронки продаж, анализ цен и нормативная база. |
Конвергенция NLP, здравоохранения и наук о жизни привела к эволюции в медицине за счет использования данных на благо сектора. Экспоненциальный рост данных в здравоохранении ускоряет потребность в решениях NLP, которые могут помочь управлять этим морем неструктурированных данных для извлечения ценных идей. Текущие инновации в области ИИ и машинного обучения помогают развивать возможности и точность приложений NLP, еще больше поощряя внедрение технологий NLP для расширения возможностей исследований и разработок в здравоохранении. Взаимосвязь NLP и здравоохранения является благом для поставщиков медицинских услуг, настраивающих уход за пациентами и медицинские услуги для обеспечения роста рынка. Databridge Market Research погрузилась в комплексный анализ рынка и показала, что глобальный рынок обработки естественного языка NLP в здравоохранении и науках о жизни растет со среднегодовым темпом роста 3,64%. Размер рынка оценивается в 2,11 млрд долларов США в 2023 году и, как ожидается, вырастет до 8,48 млрд долларов США к 2031 году.
Динамика рынка НЛП Здравоохранение Науки о жизни
Драйверы роста рынка здравоохранения и естественных наук NLP
Организация электронных медицинских карт (ЭМК) для дальнейшего анализа
Электронные медицинские карты (ЭМК), используемые организациями здравоохранения, генерируют множество данных, связанных с пациентами, которые становится трудно структурировать, хранить и анализировать. Эти электронные карты обычно включают в себя медицинские отчеты, истории болезни пациентов и другие виды данных. Важны не только организация и изучение этих данных, не менее важен и легкий доступ к этим данным. Технологии NLP, которые включают клиническую документацию, распознавание речи, исследования по добыче данных и поддержку клинических решений, являются высокопродуктивными в извлечении медицинских данных, изучении и обеспечении их доступности в соответствии с использованием. Используя NLP, поставщики медицинских услуг могут более эффективно анализировать и интерпретировать этот огромный массив данных, что приводит к улучшению принятия клинических решений, персонализированному уходу за пациентами и повышению операционной эффективности, тем самым подпитывая рост рынка.
Прогностический анализ на основе искусственного интеллекта (ИИ) и машинного обучения (МО)
NLP, являясь подразделением искусственного интеллекта , оснащен статистическими и аналитическими моделями, которые играют роль в выявлении тенденций и закономерностей. Когда NLP в здравоохранении получает сложные данные, оно структурирует их для проведения всестороннего анализа записей пациентов. Другими словами, оно выполняет предиктивный анализ данных, связанных с пациентом, которые выявляют текущее состояние здоровья и уровень воздействия на организм, а также помогает предвидеть недуги и заболевания, к которым пациент уязвим. Эти технологии позволяют извлекать полезные идеи, выявлять закономерности и прогнозировать результаты из очень больших наборов данных для более обоснованных клинических решений и лучших результатов для пациентов. Вывод этого предиктивного анализа заключается в улучшении ухода за пациентами и передовых профилактических мерах для предотвращения прогнозируемого состояния здоровья. Предиктивный анализ с помощью NLP вносит значительный вклад в улучшение услуг по уходу за пациентами и дальнейший рост рынка.
Автоматизация записей и документации пациентов снижает расходы на здравоохранение
Автоматизированная клиническая документация, работающая на основе обработки естественного языка (NLP), упрощает управление записями пациентов, преобразуя устную или письменную информацию в структурированные, применимые на практике данные. Такая автоматизация снижает нагрузку на медицинских работников, сводит к минимуму ошибки ручного ввода и гарантирует, что информация о пациентах будет записана точно и всесторонне. Эта технология автоматизации является экономически эффективным способом, позволяя медицинским работникам тратить больше времени на уход за пациентами, а не на администрирование, что приводит к повышению точности и, следовательно, общей эффективности ведения медицинских записей. Благодаря автоматизации этих черных задач медицинские работники получают экономическую эффективность, одновременно повышая общее качество ухода за пациентами. Автоматизация также позволяет унифицировать медицинские записи, объединяя все записи пациентов, хранящиеся в базе данных других врачей или медицинских центров. Здравоохранение становится экономически эффективным благодаря NLP, что является стимулом для роста Global NLP Healthcare Life Sciences.
Возможности роста рынка НЛП в сфере здравоохранения и естественных наук
Индивидуальный план лечения
NLP играет ключевую роль в подготовке индивидуального и целенаправленного плана лечения. Способность NLP извлекать и объединять данные пациентов из различных источников, таких как электронные медицинские карты, клинические заметки и истории болезни, что позволяет легко обрабатывать и идентифицировать особые потребности пациентов, генетические факторы и состояния здоровья. Это помогает поставщикам медицинских услуг подготовить план лечения, соответствующий потребностям пациентов. Разработка индивидуального плана лечения — это возможность для врачей создать наиболее эффективный курс лечения своих пациентов и, таким образом, расширить свою базу пациентов. Например, NLP может выделить закономерности в истории болезни пациента, чтобы можно было определить препараты, которые, скорее всего, будут эффективными, или даже выявить возможные побочные эффекты в случае, похожем на другие. Таким образом, NLP поддерживает точную медицину, где вмешательства будут более целенаправленными и эффективными, следовательно, повышая эффективность лечения и результаты для пациента.
Интеграция Интернета вещей в носимые устройства
Носимые устройства, интегрированные с NLP на базе IoT, позволяют собирать данные о пациентах в режиме реального времени. Это помогает контролировать здоровье пациентов удаленно в течение всего дня и позволяет медицинским работникам регистрировать любые осложнения и изменения, чтобы они могли немедленно действовать и подготовить план действий для предотвращения подобных сложностей в будущем.
Сотрудничество с фармацевтическими и биотехнологическими компаниями
Сотрудничество с фармацевтическими и биотехнологическими компаниями с целью интеграции обработки естественного языка (NLP) в процессы разработки лекарств, управления клиническими испытаниями и фармаконадзора повышает эффективность и ускоряет инновации в области естественных наук. NLP повышает эффективность клинических испытаний за счет автоматизации извлечения данных из медицинских карт и отчетов пациентов, способствуя более быстрому набору и анализу данных испытаний.
Проблемы роста рынка здравоохранения и естественных наук в НЛП
NLP в здравоохранении и медицинских науках обычно питается определенной группой терминов, которые могут не применяться ни к одной другой команде. Поскольку человеческий язык продолжает развиваться, предопределенная группа терминов может неточно структурировать данные. Это обычно происходит, когда программа NLP имеет встроенную группу терминов, которые могут не соответствовать неструктурированным данным, которые изучаются. Эту проблему легко преодолеть при определенном уровне человеческого участия.
NLP способен организовывать и категоризовать неструктурированные данные. Однако этот инструмент может стать менее эффективным из-за сложности человеческого языка. Он может не справиться со сложным языком, диалектом и опорными точками. Это, как следствие, повышает вероятность ложных положительных и отрицательных результатов.
NLP Healthcare Life Science Рынок Ограничения по размеру роста
Конфиденциальность данных и проблемы безопасности
При применении решений NLP обработка конфиденциальной информации о пациентах вызовет серьезные опасения относительно законов о конфиденциальности и нарушений безопасности данных. В то время как поставщики медицинских услуг уже изучают все возможности для внедрения технологий NLP в полной мере, им придется продираться через жесткие законы о защите данных в соответствии с HIPAA в США и GDPR в Европе — оба приняты с целью сохранения конфиденциальности пациентов и предотвращения возможного несанкционированного доступа к личной медицинской информации. Чтобы достичь всего этого, системы NLP должны быть полностью защищены. Необходимо гарантировать, что это требование выполняется путем применения надежных методов шифрования данных в состоянии покоя и в пути, очень строгих средств контроля доступа, которые ограничивают доступ к данным только авторизованным пользователям, и методов анонимизации, помогающих защитить от нежелательного раскрытия личности пациента. Агрегация этих протоколов безопасности может гарантировать
Сложность интеграции систем НЛП
Интеграция систем обработки естественного языка (NLP) с существующей ИТ-инфраструктурой здравоохранения, включая EHR и клинические системы, может быть сложной и трудоемкой. Медицинские организации сталкиваются с такими проблемами, как проблемы взаимодействия, стандартизации данных и совместимости с устаревшими системами при развертывании решений NLP. Процесс интеграции требует тщательного планирования, настройки и координации с ИТ-командами для обеспечения бесперебойной связи и функциональности на разных платформах. Более того, обучение медицинского персонала эффективному использованию инструментов NLP и интерпретации полученных сведений создает дополнительные проблемы внедрения.
Масштаб и тенденции рынка НЛП в сфере здравоохранения и естественных наук
Обзор сегментации рынка здравоохранения и естественных наук в НЛП |
|||
Тип сегментов |
Подсегменты |
||
Компонент |
Автономные решения и услуги |
||
Тип НЛП |
NLP на основе правил, статистический NLP, гибридный NLP |
||
Режим развертывания |
Локально, Облако |
||
Размер организации |
Крупные предприятия, малые и средние предприятия |
||
|
|
||
Конечный пользователь |
НЛП для врачей, НЛП для исследователей, НЛП для пациентов, НЛП для клинических операторов |
Ключевое понимание
- В последние годы, с появлением потенциала ИИ как революционного фактора в здравоохранении, применение методов машинного обучения и обработки естественного языка для эффективной обработки растущих объемов данных стимулирует одно из самых впечатляющих приложений, известное как автоматизированное клиническое кодирование, которое оптимизирует администрирование и управление клиническими записями в больницах и медицинских исследовательских учреждениях.
- Как показывают недавние опросы, за последние несколько лет появилось множество статей об автоматизированном клиническом кодировании с использованием глубокого обучения (как нынешнем основном подходе к ИИ).
- Хотя проблемы решены и безопасность и эффективность чат-ботов отмечены, человеческие аспекты здравоохранения не могут быть заменены. Таким образом, чат-боты могут стать только неотъемлемой частью клинической практики, работая в тандеме с медицинскими работниками, снижая затраты, повышая эффективность рабочего процесса и, таким образом, импровизируя на результатах для лучших результатов.
Региональный анализ рынка NLP Healthcare Life Science – Тенденции рынка
Региональный обзор рынка NLP Healthcare Life Science |
|
Регионы |
Страны |
Европа |
Германия, Франция, Великобритания, Нидерланды, Швейцария, Бельгия, Россия, Италия, Испания, Турция, Остальная Европа |
Азиатско-Тихоокеанский регион |
Китай, Япония, Индия, Южная Корея, Сингапур, Малайзия, Австралия, Таиланд, Индонезия, Филиппины, остальные страны Азиатско-Тихоокеанского региона |
Северная Америка |
США, Канада и Мексика |
МЭА |
Саудовская Аравия, ОАЭ, Южная Африка, Египет, Израиль, остальной Ближний Восток и Африка |
Южная Америка |
Бразилия, Аргентина и остальная часть Южной Америки |
Ключевые идеи
- Ожидается, что Северная Америка будет доминировать на рынке из-за растущего спроса на решения NLP и значительных инвестиций в робототехнику и инициативы по исследованиям и разработкам, связанные с NLP. Развитая инфраструктура здравоохранения региона и сильное присутствие ключевых технологических гигантов способствуют быстрому внедрению технологий NLP в различных приложениях, включая клиническую документацию, анализ взаимодействия с пациентами и аналитику данных.
- Ожидается, что Азиатско-Тихоокеанский регион станет свидетелем значительного роста за счет широкого внедрения передовых технологий, направленных на оптимизацию бизнес-операций. Увеличение инвестиций в ИТ-инфраструктуру здравоохранения и повышение осведомленности о преимуществах НЛП в улучшении процессов принятия клинических решений и вовлеченности пациентов являются ключевыми факторами, обуславливающими этот рост.
- Нидерландская организация научных исследований (NWO) участвует в проектах, применяющих NLP для анализа научных данных, полученных в ходе биомедицинских исследований. Целью является разработка новых методов лечения и улучшение понимания биологии заболеваний.
- Проект European Health Data Space (EHDS), финансируемый Европейским союзом, направлен на разработку инструментов NLP, способных обрабатывать несколько европейских языков. Целью инициативы является создание стандартизированных решений NLP, которые могут обрабатывать данные о состоянии здоровья на разных языках и диалектах по всей Европе.
- NHS Digital в Великобритании фокусируется на интеграции технологий NLP в системы EHR для улучшения клинической документации и поиска информации. Такая интеграция пытается достичь более высокого уровня точности данных для пациентов, что в другом смысле позволит правильно принимать правильные клинические решения благодаря тому, что она автоматизирует процессы извлечения и анализа данных из медицинских записей.
- В Южной Африке компания Data Science Africa разрабатывает модели обработки естественного языка, которые поддерживают ряд местных языков, от африкаанс и зулу до других, чтобы соответствовать многоязычным требованиям в региональной системе здравоохранения.
Лидеры рынка NLP Healthcare Life Science
- 3M (США)
- Корпорация Cerner (США)
- Nuance Communications Inc. (США)
- Dolby Systems Inc. (США)
- Майкрософт (США)
- IBM (США)
- Google LLC (Alphabet Inc.) (США)
- Amazon Web Services Inc. (США)
- Apixio Inc. (США)
- Авербис (Германия)
- Clinithink (США)
- Лексалитика (США)
- Нарративная наука (США)
- JohnSnow Labs (США)
- BenevolentAI (Великобритания)
Последние события на рынке здравоохранения и естественных наук в области НЛП
- В феврале 2024 года Persistent Systems совместно с Microsoft выпустили новое решение PHM, работающее на основе генеративного ИИ. Разработанное для поддержки моделей ухода на основе ценностей, это передовое решение использует SDOH для измерения неклинических потребностей пациентов. В результате оно повышает точность предиктивной аналитики в расходах на здравоохранение при нескольких клинических состояниях.
- В июне 2023 года Apixio, лидер в области решений на основе искусственного интеллекта для ценностно-ориентированного здравоохранения, завершила слияние с ClaimLogiq, технологической компанией, известной своим опытом в повышении точности предоплатных требований для медицинских планов. Недавно объединенная организация будет носить название Apixio и сразу же станет одним из крупнейших и наиболее доминирующих игроков в области данных и аналитики здравоохранения. Стратегическое слияние объединяет передовой ИИ Apixio с точностью ClaimLogiq в обработке требований, создавая мощную платформу для предоставления комплексных идей и решений. Новая Apixio стремится произвести революцию в управлении здравоохранением, повышая точность данных, обеспечивая оптимальность прогнозирования затрат и внедряя более эффективные стратегии ценностно-ориентированного обслуживания — новый стандарт в отрасли аналитики здравоохранения.
Отчет DBMR о рынке Natural Language Processing NLP Healthcare Life Science знакомит вас с ценными идеями, которые могут помочь в принятии нескольких важных бизнес-решений. На основе наших отчетов и исследовательского опыта вы можете создавать реалистичные стратегии роста для вашего бизнеса.
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Интерактивная панель анализа данных
- Панель анализа компании для возможностей с высоким потенциалом роста
- Доступ аналитика-исследователя для настройки и запросов
- Анализ конкурентов с помощью интерактивной панели
- Последние новости, обновления и анализ тенденций
- Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Методология исследования
Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.
Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.
Доступна настройка
Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.