Обзор и прогноз мирового рынка обработки естественного языка NLP в здравоохранении и естественных науках до 2031 года - Анализ рынка и доля рынка

Запрос на TOC Запрос на TOC Обратиться к аналитику Обратиться к аналитику Купить сейчас Купить сейчас Узнать перед покупкой Узнать перед покупкой Бесплатный пример отчета Бесплатный пример отчета

Обзор и прогноз мирового рынка обработки естественного языка NLP в здравоохранении и естественных науках до 2031 года - Анализ рынка и доля рынка

  • ICT
  • Upcoming Report
  • Aug 2024
  • Global
  • 350 Pages
  • Количество таблиц: 60
  • Количество рисунков: 220

Global Natural Language Processing Nlp Healthcare Life Sciences Market

Размер рынка в млрд долларов США

CAGR :  % Diagram

Diagram Прогнозируемый период
2024 –2031
Diagram Размер рынка (базовый год)
USD 2.11 Billion
Diagram Размер рынка (прогнозируемый год)
USD 8.48 Billion
Diagram CAGR
%
Diagram Основные игроки рынка
  • 3M (U.S.)
  • Cerner Corporation (U.S.)
  • Nuance Communications Inc. (U.S.)
  • Dolby Systems Inc. (U.S.)
  • Microsoft (U.S.)

>Глобальный рынок обработки естественного языка NLP в здравоохранении и естественных науках в 2023 году оценивался в 2,11 млрд долларов США. Прогнозируется, что размер рынка будет расти со среднегодовым темпом роста 19% и достигнет 8,48 млрд долларов США к 2031 году.

Natural Language Processing (NLP) in Healthcare and Life Sciences Market

Глобальный рынок обработки естественного языка NLP в здравоохранении и естественных науках – обзор отрасли

Сектор здравоохранения и естественных наук производит огромный объем данных, включая электронные медицинские карты, отчеты о клинических испытаниях, данные исследований и отчеты пациентов. По данным Всемирного экономического форума, отрасль здравоохранения генерирует более 30% данных, генерируемых во всем мире, большая часть которых остается неиспользованной. Внедрение обработки естественного языка (NLP) в сектор здравоохранения играет огромную роль в обработке медицинских данных, что приводит к инновациям и изобретениям, которые потенциально могут стать основой для открытия методов лечения и терапии, лекарств и медикаментов, которые могут оказаться эффективным средством от различных заболеваний. NLP полностью преобразило отрасль здравоохранения и естественных наук своим комплексным подходом, ориентированным на анализ данных. Теперь нет ни одной записи в области здравоохранения и естественных наук, которая не использовалась бы благодаря динамическому анализу неструктурированных данных NLP, анализу настроений, распознаванию именованных сущностей и открытию лекарств для извлечения ценных идей, которые помогают радикально улучшить взаимодействие с пациентами, и, как следствие, глобальный рынок NLP в области здравоохранения и естественных наук расширяется.  

Отчет по исследованию рынка Data Bridge Market содержит сведения о последних событиях, правилах торговли, доле рынка, тенденциях рынка на основе сегментации и регионального анализа, влиянии участников рынка, анализе возможностей с точки зрения новых источников дохода, правилах рынка, стратегическом анализе роста рынка, размере рынка, росте рынка по категориям, нишах приложений и доминировании, одобрении продуктов, запуске продуктов, географическом расширении и технологических инновациях на рынке. Чтобы получить больше информации о рынке, свяжитесь с командой экспертов-аналитиков Data Bridge Market Research. Наша команда поможет вам принять обоснованные рыночные решения для достижения роста бизнеса.

Глобальный размер рынка обработки естественного языка NLP в здравоохранении и естественных науках

Отчет о рынке здравоохранения и наук о жизни NLP. Подробности показателей

Прогнозируемый период

2024-2031

Базовый год

2023

Исторический год

2022 (настраиваемый 2016-2021)

Единица измерения

млрд долларов США

Указатель данных

рыночная аналитика рыночная стоимость, темпы роста, сегменты рынка, географический охват, участники рынка и рыночный сценарий, углубленный экспертный анализ, эпидемиология пациентов, анализ воронки продаж, анализ цен и нормативная база.

Конвергенция NLP, здравоохранения и наук о жизни привела к эволюции в медицине за счет использования данных на благо сектора. Экспоненциальный рост данных в здравоохранении ускоряет потребность в решениях NLP, которые могут помочь управлять этим морем неструктурированных данных для извлечения ценных идей. Текущие инновации в области ИИ и машинного обучения помогают развивать возможности и точность приложений NLP, еще больше поощряя внедрение технологий NLP для расширения возможностей исследований и разработок в здравоохранении. Взаимосвязь NLP и здравоохранения является благом для поставщиков медицинских услуг, настраивающих уход за пациентами и медицинские услуги для обеспечения роста рынка. Databridge Market Research погрузилась в комплексный анализ рынка и показала, что глобальный рынок обработки естественного языка NLP в здравоохранении и науках о жизни растет со среднегодовым темпом роста 3,64%. Размер рынка оценивается в 2,11 млрд долларов США в 2023 году и, как ожидается, вырастет до 8,48 млрд долларов США к 2031 году.

Динамика рынка НЛП Здравоохранение Науки о жизни

Драйверы роста рынка здравоохранения и естественных наук NLP

Организация электронных медицинских карт (ЭМК) для дальнейшего анализа     

Электронные медицинские карты (ЭМК), используемые организациями здравоохранения, генерируют множество данных, связанных с пациентами, которые становится трудно структурировать, хранить и анализировать. Эти электронные карты обычно включают в себя медицинские отчеты, истории болезни пациентов и другие виды данных. Важны не только организация и изучение этих данных, не менее важен и легкий доступ к этим данным. Технологии NLP, которые включают клиническую документацию, распознавание речи, исследования по добыче данных и поддержку клинических решений, являются высокопродуктивными в извлечении медицинских данных, изучении и обеспечении их доступности в соответствии с использованием. Используя NLP, поставщики медицинских услуг могут более эффективно анализировать и интерпретировать этот огромный массив данных, что приводит к улучшению принятия клинических решений, персонализированному уходу за пациентами и повышению операционной эффективности, тем самым подпитывая рост рынка.

Прогностический анализ на основе искусственного интеллекта (ИИ) и машинного обучения (МО)

NLP, являясь подразделением искусственного интеллекта , оснащен статистическими и аналитическими моделями, которые играют роль в выявлении тенденций и закономерностей. Когда NLP в здравоохранении получает сложные данные, оно структурирует их для проведения всестороннего анализа записей пациентов. Другими словами, оно выполняет предиктивный анализ данных, связанных с пациентом, которые выявляют текущее состояние здоровья и уровень воздействия на организм, а также помогает предвидеть недуги и заболевания, к которым пациент уязвим. Эти технологии позволяют извлекать полезные идеи, выявлять закономерности и прогнозировать результаты из очень больших наборов данных для более обоснованных клинических решений и лучших результатов для пациентов. Вывод этого предиктивного анализа заключается в улучшении ухода за пациентами и передовых профилактических мерах для предотвращения прогнозируемого состояния здоровья. Предиктивный анализ с помощью NLP вносит значительный вклад в улучшение услуг по уходу за пациентами и дальнейший рост рынка.

Автоматизация записей и документации пациентов снижает расходы на здравоохранение

Автоматизированная клиническая документация, работающая на основе обработки естественного языка (NLP), упрощает управление записями пациентов, преобразуя устную или письменную информацию в структурированные, применимые на практике данные. Такая автоматизация снижает нагрузку на медицинских работников, сводит к минимуму ошибки ручного ввода и гарантирует, что информация о пациентах будет записана точно и всесторонне. Эта технология автоматизации является экономически эффективным способом, позволяя медицинским работникам тратить больше времени на уход за пациентами, а не на администрирование, что приводит к повышению точности и, следовательно, общей эффективности ведения медицинских записей. Благодаря автоматизации этих черных задач медицинские работники получают экономическую эффективность, одновременно повышая общее качество ухода за пациентами. Автоматизация также позволяет унифицировать медицинские записи, объединяя все записи пациентов, хранящиеся в базе данных других врачей или медицинских центров. Здравоохранение становится экономически эффективным благодаря NLP, что является стимулом для роста Global NLP Healthcare Life Sciences.   

Возможности роста рынка НЛП в сфере здравоохранения и естественных наук

Индивидуальный план лечения

NLP играет ключевую роль в подготовке индивидуального и целенаправленного плана лечения. Способность NLP извлекать и объединять данные пациентов из различных источников, таких как электронные медицинские карты, клинические заметки и истории болезни, что позволяет легко обрабатывать и идентифицировать особые потребности пациентов, генетические факторы и состояния здоровья. Это помогает поставщикам медицинских услуг подготовить план лечения, соответствующий потребностям пациентов. Разработка индивидуального плана лечения — это возможность для врачей создать наиболее эффективный курс лечения своих пациентов и, таким образом, расширить свою базу пациентов. Например, NLP может выделить закономерности в истории болезни пациента, чтобы можно было определить препараты, которые, скорее всего, будут эффективными, или даже выявить возможные побочные эффекты в случае, похожем на другие. Таким образом, NLP поддерживает точную медицину, где вмешательства будут более целенаправленными и эффективными, следовательно, повышая эффективность лечения и результаты для пациента.

Интеграция Интернета вещей в носимые устройства

Носимые устройства, интегрированные с NLP на базе IoT, позволяют собирать данные о пациентах в режиме реального времени. Это помогает контролировать здоровье пациентов удаленно в течение всего дня и позволяет медицинским работникам регистрировать любые осложнения и изменения, чтобы они могли немедленно действовать и подготовить план действий для предотвращения подобных сложностей в будущем.

Сотрудничество с фармацевтическими и биотехнологическими компаниями    

Сотрудничество с фармацевтическими и биотехнологическими компаниями с целью интеграции обработки естественного языка (NLP) в процессы разработки лекарств, управления клиническими испытаниями и фармаконадзора повышает эффективность и ускоряет инновации в области естественных наук. NLP повышает эффективность клинических испытаний за счет автоматизации извлечения данных из медицинских карт и отчетов пациентов, способствуя более быстрому набору и анализу данных испытаний. 

Проблемы роста рынка здравоохранения и естественных наук в НЛП

NLP в здравоохранении и медицинских науках обычно питается определенной группой терминов, которые могут не применяться ни к одной другой команде. Поскольку человеческий язык продолжает развиваться, предопределенная группа терминов может неточно структурировать данные. Это обычно происходит, когда программа NLP имеет встроенную группу терминов, которые могут не соответствовать неструктурированным данным, которые изучаются. Эту проблему легко преодолеть при определенном уровне человеческого участия.

NLP способен организовывать и категоризовать неструктурированные данные. Однако этот инструмент может стать менее эффективным из-за сложности человеческого языка. Он может не справиться со сложным языком, диалектом и опорными точками. Это, как следствие, повышает вероятность ложных положительных и отрицательных результатов.  

NLP Healthcare Life Science Рынок Ограничения по размеру роста

Конфиденциальность данных и проблемы безопасности

In the application of NLP solutions, processing of sensitive patient information will give rise to drastic concerns about privacy laws and data security breaches. While healthcare providers are already exploring every opportunity to implement NLP technologies to the fullest, they will have to wade through rigid data protection laws under HIPAA in the US and the GDPR in Europe—both enacted for the purpose of maintaining the confidentiality of patients and stemming possible unauthorized access to personal health information. To accomplish all this, NLP systems should be fully security enabled. It should be guaranteed that this requirement is met by the application of robust methods for the encryption of data at rest and in transit, very strict access controls that limit access of data to only authorized users, and anonymization techniques to help guard against undesired exposure of the patient's identity. Aggregation of these security protocols can guarantee

Integration Complexity of NLP Systems  

Integrating natural language processing (NLP) systems with existing healthcare IT infrastructure, including EHRs and clinical systems, can be complex and time-consuming. Healthcare organizations face challenges such as interoperability issues, data standardization, and compatibility with legacy systems when deploying NLP solutions. The integration process requires careful planning, customization, and coordination with IT teams to ensure seamless connectivity and functionality across different platforms. Moreover, training healthcare staff to effectively utilize NLP tools and interpret the insights generated poses additional implementation challenges.

NLP Healthcare Life Science Market Scope and Trends

NLP Healthcare Life Science Market Segmentations Overview

Segments Type

Sub-Segments

Component

Standalone Solutions and Services

NLP Type

Rule-Based NLP, Statistical NLP, Hybrid NLP

Deployment Mode

On-Premises, Cloud

Organization Size

Large Enterprises, Small and Medium Enterprises

Application

Interactive Voice Response (IVR), Pattern and Image Recognition, Auto Coding, Classification and Categorization, Text and Speech Analytics, Others

End-User

NLP for Physicians, NLP for Researchers, NLP for Patients, NLP for Clinical Operators

 Key Insight

  • In the recent years, with the emergence of AI potential as a game changer in healthcare, by employing machine learning and NLP techniques to the effective processing of growing volumes of data boosts one of the most impressive applications known as automated clinical coding that streamlines the administration and management of clinical records in a hospital and medical research setting.
  • There has been a surge of articles for automated clinical coding with deep learning (as the current mainstream approach of AI) in the last few years, as reviewed in recent surveys.
  • Though the concerns are addressed and safety and efficacy of chat bots are pointed out, human aspects of healthcare cannot be replaced. In this way, chat bots can only become an integral part of the clinical practice to work in tandem with healthcare professionals, decreasing cost, enhancing workflow efficiencies, and thus improvising on outcomes for better results.

NLP Healthcare Life Science Market Regional Analysis – Market Trends

NLP Healthcare Life Science Market Regional Overview

Regions

Countries

Europe

Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe

APAC

China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific

North America

U.S., Canada, and Mexico

MEA

Saudi Arabia, U.A.E., South Africa, Egypt, Israel, Rest of Middle East, and Africa

South America

Brazil, Argentina, and Rest of South America

Key Insights

  • North America is expected to dominate the market due to increasing demand for NLP solutions and substantial investments in robotics and NLP-related research and development initiatives. The region's advanced healthcare infrastructure and strong presence of key technology giants facilitate the rapid adoption of NLP technologies across various applications, including clinical documentation, patient interaction analysis, and data analytics. 
  • Asia-Pacific is expected to witness significant growth due to widespread adoption of advanced technologies aimed at optimizing business operations. Increasing investments in healthcare IT infrastructure and rising awareness about the benefits of NLP in improving clinical decision-making processes and patient engagement are key factors driving this growth.
  • The Netherlands Organization for Scientific Research (NWO) is involved with projects applying NLP for the analysis of scientific data obtained from biomedical research studies. The goal is to develop new treatments and improve understanding of disease biology.
  • The European Union-funded European Health Data Space (EHDS) project is focused on developing NLP tools capable of handling multiple European languages. The initiative aims to create standardized NLP solutions that can process health data across various languages and dialects throughout Europe.
  • NHS Digital in the UK is focusing on integrating NLP technologies into EHR systems to enhance clinical documentation and information retrieval. Such integration tries to achieve an enhanced level of data accuracy for patients, which in another sense will allow for the proper conduction of right clinical decisions due to the fact that it automates data extraction and analysis processes from medical recording.
  • In South Africa, Data Science Africa develops NLP models that are built to support a number of local languages, from Afrikaans and Zulu to others, to be placed in a position to meet multilingual requirements within a regionally based healthcare system.

NLP Healthcare Life Science Market Leading Players

  • 3M (U.S.)
  • Cerner Corporation (U.S.)
  • Nuance Communications Inc. (U.S.)
  • Dolby Systems Inc. (U.S.)
  • Microsoft (U.S.)
  • IBM (U.S.)
  • Google LLC (Alphabet Inc.) (U.S.)
  • Amazon Web Services Inc. (U.S.)
  • Apixio Inc. (U.S.)
  • Averbis (Germany)
  • Clinithink (U.S.)
  • Lexalytics (U.S.)
  • Narrative Science (U.S.)
  • JohnSnow Labs (U.S.)
  • BenevolentAI (U.K.)

NLP Healthcare Life Science Market Recent Developments

  • In February 2024, Persistent Systems collaborated with Microsoft to release a new PHM solution that is powered by generative AI. Developed to underpin value-based care models, this advanced solution uses SDOH to measure non-clinical patient needs. As a result, it bolsters the accuracy of predictive analytics in healthcare expenditure on several clinical conditions.
  • In June 2023, Apixio, a leader in artificial intelligence solutions for value-based healthcare, completed its merger with ClaimLogiq, a technology company known for its expertise in enhancing pre-payment claim accuracy for health plans. The newly combined entity will go by the Apixio name and immediately become one of the largest, most dominant players in the healthcare data and analytics space. The strategic merger brings together the advanced AI of Apixio with the precision of ClaimLogiq in claims processing, creating a powerful platform for delivery of comprehensive insights and solutions. The new Apixio looks to revolutionize healthcare management by improving the accuracy of data, bringing optimality in cost predictions, and driving more effective value-based care strategies—a new standard in the healthcare analytics industry.

DBMR’s market report on the Natural Language Processing NLP Healthcare Life Science market takes you through valuable insights that can contribute to making several important business decisions. Based on our reports and research expertise you can create realistic growth strategies for your business.   


SKU-

Get online access to the report on the World's First Market Intelligence Cloud

  • Интерактивная панель анализа данных
  • Панель анализа компании для возможностей с высоким потенциалом роста
  • Доступ аналитика-исследователя для настройки и запросов
  • Анализ конкурентов с помощью интерактивной панели
  • Последние новости, обновления и анализ тенденций
  • Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Запросить демонстрацию

Методология исследования

Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.

Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.

Доступна настройка

Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.

Часто задаваемые вопросы

The Global Natural Language Processing NLP Healthcare Life Sciences Markets growing at a CAGR 3.64% and is expected to reach 2.51 in 2024.
The Global Natural Language Processing NLP Healthcare Life Sciences Markets growing CAGR of 3.64% to reach USD 8.48 billion by 2031.
Key drivers Adoption of Electronic Health Records (EHRs) & Advancements in Artificial Intelligence (AI) and Machine Learning (ML)
APAC, particularly countries like China and India, is experiencing significant industrial growth and urbanization.
Our TRIPOD analysis involves comprehensive primary as well as secondary research to gather the data that is analyzed using credible data analysis methodologies involving Data Forecast Modelling, Porter’s Five Force Model, Demand Supply Chain Analysis, and Value Change Analysis.