Глобальный рынок MLOP, по компонентам (платформа, услуга), режиму развертывания (локальный, облачный, гибридный), размеру организации (крупные предприятия, малые и средние предприятия (МСП)), отраслевым вертикалям (финансовые услуги (BFSI), производство). , Информационные технологии (ИТ) и телекоммуникации, Розничная торговля и электронная коммерция, Здравоохранение и другие) - Тенденции отрасли и прогноз до 2031 года.
Анализ и размер рынка MLOP
Операции машинного обучения (MLOps) относятся к набору практик и инструментов, используемых для оптимизации и автоматизации развертывания, мониторинга и управления моделями машинного обучения в производственных средах. Цель MLOps — устранить разрыв между разработкой и внедрением моделей машинного обучения, обеспечивая согласованность, надежность и масштабируемость на протяжении всего жизненного цикла машинного обучения.
Исследование рынка Data Bridge показывает, что мировой рынок MLOP, объем которого в 2023 году составлял 7,62 миллиарда долларов США, как ожидается, достигнет 11,69 миллиарда долларов США к 2031 году, а среднегодовой темп роста составит 5,5% в течение прогнозируемого периода с 2024 по 2031 год. такие сведения о рынке, как рыночная стоимость, темпы роста, сегменты рынка, географический охват, игроки рынка и рыночный сценарий. Отчет о рынке, подготовленный командой Data Bridge Market Research, включает в себя углубленный экспертный анализ, анализ импорта / экспорта, анализ цен, анализ потребления продукции и анализ пестика.
Объем отчета и сегментация рынка
Отчет по метрике |
Подробности |
Прогнозный период |
2024–2031 гг. |
Базисный год |
2023 год |
Исторические годы |
2022 г. (индивидуально с 2016 по 2021 г.) |
Количественные единицы |
Выручка в миллиардах долларов США, объемы в единицах, цены в долларах США. |
Охваченные сегменты |
Компонент (платформа, услуга), режим развертывания (локальный, облачный, гибридный), размер организации (крупные предприятия, малые и средние предприятия (МСП)), отраслевые вертикали (финансовые услуги (BFSI), производство, информационные технологии (ИТ) ) и телекоммуникации, розничная торговля и электронная коммерция, здравоохранение, другие) |
Охваченные страны |
США, Канада, Мексика, Бразилия, Аргентина, Остальная часть Южной Америки, Германия, Италия, Великобритания, Франция, Испания, Нидерланды, Бельгия, Швейцария, Турция, Россия, Остальная Европа, Япония, Китай, Индия, Южная Корея, Австралия, Сингапур, Малайзия, Таиланд, Индонезия, Филиппины, остальные страны Азиатско-Тихоокеанского региона, Саудовская Аравия, ОАЭ, Южная Африка, Египет, Израиль, остальные страны Ближнего Востока и Африки. |
Охваченные игроки рынка |
Databricks (США), Domino Data Lab (США), Kubeflow (от Google) (США), Amazon SageMaker (США), Paperspace Gradient (США), Fiddler AI (США), MLflow (от Databricks) (США), Valohai ( Финляндия), Pachyderm (США), ZenML (Германия) |
Возможности рынка |
|
Определение рынка
MLOps включает в себя ряд решений и услуг, которые оптимизируют весь жизненный цикл машинного обучения: от разработки моделей и обучения до развертывания, мониторинга и управления. Эти инструменты MLOps устраняют разрыв между наукой о данных и производством, обеспечивая эффективные рабочие процессы, оптимизированную производительность моделей и плавную интеграцию моделей машинного обучения в реальные приложения в различных отраслях.
Динамика рынка МЛОП
Драйверы
- Растущий спрос на улучшенное управление моделями и их объяснимость
Растущий спрос на улучшенное управление моделями и их объяснимость является важным фактором, продвигающим вперед глобальный рынок MLOps (операций машинного обучения). Поскольку организации все чаще интегрируют модели машинного обучения в свою деятельность, повышенное внимание уделяется обеспечению надежности, прозрачности и подотчетности этих моделей. Расширенное управление моделями включает в себя установление строгих политик и средств контроля для управления всем жизненным циклом моделей машинного обучения с учетом таких аспектов, как контроль версий, соответствие требованиям и управление рисками. Кроме того, потребность в улучшенной объяснимости стимулирует разработку инструментов и методов для интерпретации решений модели, предоставляя заинтересованным сторонам понимание поведения модели и позволяя принимать обоснованные решения. Такой акцент на управлении и объяснимости подчеркивает решающую роль, которую решения MLOps играют в повышении доверия, соответствия требованиям и надежности в рамках развертываний машинного обучения, тем самым стимулируя рост рынка.
- Растущее внедрение и масштабируемость облака
Растущее внедрение облачных вычислений и стремление к масштабируемости представляют собой ключевые движущие силы глобального рынка MLOps (операций машинного обучения). Поскольку организации все чаще используют облачные платформы для размещения своей инфраструктуры машинного обучения, возникает острая потребность в решениях MLOps, способных легко интегрироваться с облачными средами и облегчать развертывание масштабируемых моделей и управление ими. Облачные сервисы MLOps предлагают беспрецедентную гибкость, позволяя предприятиям быстро масштабировать свои операции машинного обучения в ответ на колебания спроса, а также оптимизируя совместную работу, контроль версий и оптимизацию ресурсов. В результате конвергенция растущих требований к внедрению облачных технологий и масштабируемости подчеркивает незаменимую роль решений MLOps в организации эффективных, гибких и масштабируемых рабочих процессов машинного обучения в глобальном масштабе.
Возможности
- Интеграция с новыми технологиями
Интеграция с новыми технологиями открывает значительные возможности для мирового рынка MLOps. Поскольку новые технологии, такие как искусственный интеллект (ИИ), периферийные вычисления, Интернет вещей (IoT) и блокчейн, продолжают развиваться, возникает дополнительная потребность в передовых решениях MLOps, которые могут легко интегрироваться с этими новыми технологиями. Используя инструменты и методы MLOps, организации могут повысить эффективность, надежность и масштабируемость своих инициатив в области искусственного интеллекта и машинного обучения в различных областях. Интеграция с новыми технологиями позволяет платформам MLOps решать сложные сценарии использования, такие как аналитика в реальном времени, прогнозное обслуживание, автономные системы и персонализированный пользовательский опыт, тем самым открывая новые возможности для инноваций и конкурентного преимущества на рынке.
- Растущее внимание к МСП и индивидуальным застройщикам
Растущее внимание к малым и средним предприятиям (МСП) и индивидуальным разработчикам открывает значительные возможности для глобального рынка MLOps. Поскольку внедрение машинного обучения и искусственного интеллекта выходит за пределы крупных предприятий, малые и средние предприятия и отдельные разработчики все чаще ищут доступные и экономически эффективные решения MLOps, адаптированные к их конкретным потребностям и ограничениям ресурсов. Обслуживая этот растущий сегмент рынка, поставщики MLOps привлекают обширную группу потенциальных клиентов, желающих использовать возможности машинного обучения для улучшения своих продуктов, услуг и операций. Более того, предоставление МСП и отдельным разработчикам удобных для пользователя платформ MLOps может демократизировать доступ к передовой аналитике и автоматизации, стимулируя инновации и способствуя более широкому внедрению технологий машинного обучения в различных отраслях и приложениях.
Ограничения/вызовы
- Рост рисков безопасности данных
Эскалация рисков безопасности данных представляет собой серьезную проблему для мирового рынка MLOP. С распространением конфиденциальных данных, используемых в операциях машинного обучения, включая личную информацию и частные бизнес-данные, вероятность утечки данных, несанкционированного доступа и злонамеренных атак становится все более очевидной. Обеспечение конфиденциальности, целостности и доступности данных на протяжении всего жизненного цикла MLOps, от обучения до развертывания и далее, требует надежных мер безопасности и соблюдения строгих стандартов соответствия. Однако сложность рабочих процессов MLOps в сочетании с распределенным характером обработки и хранения данных усложняет меры по обеспечению безопасности и повышает уязвимость к киберугрозам.
- Сложность инструментов MLOps
Сложность, связанная с инструментами MLOps, становится серьезной проблемой для глобального рынка MLOps. Хотя эти инструменты предлагают расширенные возможности для управления и развертывания моделей машинного обучения, их сложный характер часто создает препятствия для внедрения, особенно для организаций, не имеющих специализированного опыта или ресурсов. Сложные инструменты MLOps могут потребовать обширного обучения и технических навыков для эффективной навигации, что приводит к увеличению времени внедрения, увеличению затрат и увеличению риска ошибок. Кроме того, быстрые темпы инноваций в сфере MLOps еще больше усугубляют эту проблему, поскольку организации изо всех сил пытаются идти в ногу с развивающимися технологиями и лучшими практиками.
В этом отчете о рынке представлена подробная информация о последних событиях, торговых правилах, анализе импорта-экспорта, анализе производства, оптимизации цепочки создания стоимости, доле рынка, влиянии внутренних и локализованных игроков рынка, анализируются возможности с точки зрения новых источников дохода, изменений в рыночном регулировании. , стратегический анализ роста рынка, размер рынка, рост рынка категорий, ниши приложений и доминирование, одобрение продуктов, запуск продуктов, географическое расширение, технологические инновации на рынке. Чтобы получить дополнительную информацию о рынке, свяжитесь с отделом исследования рынка Data Bridge для получения аналитического обзора, наша команда поможет вам принять обоснованное рыночное решение для достижения роста рынка.
Недавние улучшения
- В мае 2021 года Google Cloud запустила Vertex AI, управляемую платформу машинного обучения, интегрирующую различные сервисы для создания, обучения и развертывания моделей машинного обучения, упрощающую жизненный цикл разработки ИИ. Эта инициатива была направлена на оптимизацию процессов разработки и развертывания моделей, позволяя организациям ускорить внедрение ИИ и эффективно достигать бизнес-целей.
- В сентябре 2019 года DataRobot запустила свое решение MLOps после приобретения ParallelM, интегрирующее возможности управления моделями и мониторинга для централизованного развертывания, мониторинга и управления моделями машинного обучения на предприятиях, что в конечном итоге повышает эффективность развертывания ИИ. Эта инициатива была направлена на решение проблем, с которыми сталкиваются организации при получении измеримой ценности от проектов ИИ, путем предоставления комплексного решения для автоматизации и управления всем жизненным циклом машинного обучения.
Глобальный рынок MLOP
Рынок сегментирован по компонентам, способу развертывания, размеру организации и отраслевым вертикалям. Рост среди этих сегментов поможет вам проанализировать скудные сегменты роста в отраслях и предоставить пользователям ценный обзор рынка и рыночную информацию, которая поможет им принять стратегические решения для определения основных рыночных приложений.
Компонент
- Платформа
- Услуга
Режим развертывания
- На территории
- Облако
- Гибридный
Размер организации
- Крупные предприятия
- Малые и средние предприятия (МСП)
Отраслевые вертикали
- Финансовые услуги (BFSI)
- Производство
- Информационные технологии (ИТ) и телекоммуникации
- Розничная торговля и электронная коммерция
- Здравоохранение
- Другие
Анализ региона / аналитика рынка MLOP
Рынок анализируется, и информация о размере рынка и тенденциях предоставляется по регионам, компонентам, способам развертывания, размеру организации и отраслевым вертикалям, как указано выше.
Регионы присутствия на рынке: Северная Америка, Южная Америка, Европа, Азиатско-Тихоокеанский регион, Ближний Восток и Африка. Страны, включенные в отчет о мировом рынке MLOP, включают США, Канаду, Мексику, Бразилию, Аргентину, остальную часть Южной Америки, Германию, Италию, Великобританию, Францию, Испанию, Нидерланды, Бельгию, Швейцария, Турцию, Россию, остальную Европу. Япония, Китай, Индия, Южная Корея, Австралия, Сингапур, Малайзия, Таиланд, Индонезия, Филиппины, остальные страны Азиатско-Тихоокеанского региона, Саудовская Аравия, ОАЭ, Южная Африка, Египет, Израиль, остальные страны Ближнего Востока и Африки.
Северная Америка доминирует на мировом рынке MLOps по нескольким причинам. Регион может похвастаться развитой экосистемой технологических компаний, исследовательских институтов и квалифицированных специалистов, специализирующихся в области машинного обучения и обработки данных, способствующих инновациям и лидерству на рынке. Кроме того, в Северной Америке расположены многие ведущие поставщики облачных услуг, предлагающие масштабируемую инфраструктуру и передовые решения MLOps, удовлетворяющие разнообразные потребности бизнеса. Более того, сильная нормативно-правовая база региона в сочетании со зрелым корпоративным рынком способствует широкому внедрению практики MLOps для обеспечения соблюдения требований, управления и управления рисками. Кроме того, предпринимательская культура и экосистема венчурного капитала Северной Америки способствуют быстрому росту стартапов и новых игроков в пространстве MLOps, способствуя доминированию региона на мировом рынке. В целом, сочетание технологического опыта, вспомогательной инфраструктуры, нормативно-правовой базы и предпринимательского динамизма делает Северную Америку лидером в продвижении и внедрении MLOps во всем мире.
Азиатско-Тихоокеанский регион становится самым быстрорастущим регионом на мировом рынке MLOP благодаря нескольким ключевым факторам. В регионе происходит быстрая цифровая трансформация в различных отраслях, что способствует внедрению технологий машинного обучения и искусственного интеллекта для повышения эффективности и конкурентоспособности бизнеса. Поскольку организации в Азиатско-Тихоокеанском регионе все больше осознают стратегическую важность анализа данных, растет спрос на решения MLOps для оптимизации разработки, развертывания и управления моделями машинного обучения.
В разделе отчета «Регион» также представлены отдельные факторы, влияющие на рынок, и изменения в регулировании рынка внутри страны, которые влияют на текущие и будущие тенденции рынка. Такие данные, как анализ цепочки создания стоимости в нисходящем и восходящем направлении, технические тенденции и анализ пяти сил Портера, тематические исследования, являются некоторыми из указателей, используемых для прогнозирования рыночного сценария для отдельных стран. Кроме того, при предоставлении прогнозного анализа данных по региону учитываются наличие и доступность мировых брендов, а также проблемы, с которыми сталкиваются из-за большой или недостаточной конкуренции со стороны местных и отечественных брендов, влияние внутренних тарифов и торговых маршрутов.
Конкурентная среда и анализ доли рынка MLOP
Конкурентная среда рынка предоставляет подробную информацию о конкурентах. Подробная информация включает обзор компании, финансовые показатели компании, полученный доход, рыночный потенциал, инвестиции в исследования и разработки, новые рыночные инициативы, глобальное присутствие, производственные площадки и объекты, производственные мощности, сильные и слабые стороны компании, запуск продукта, ширину и широту продукта, а также доминирование приложений. Приведенные выше данные относятся только к ориентации компаний на рынке.
Некоторые из основных игроков, работающих на рынке:
- Блоки данных (США)
- Лаборатория данных Domino (США)
- Kubeflow (от Google) (США)
- Amazon SageMaker (США)
- Градиент бумажного пространства (США)
- Скрипач AI (США)
- MLflow (от Databricks) (США)
- Светлая акула (Финляндия)
- Толстокожий (США)
- ЗенМЛ (Германия)
Артикул-