Global Healthcare Generative AI Market – Industry Trends and Forecast to 2031

Запрос на TOC Запрос на TOC Обратиться к аналитику Обратиться к аналитику Купить сейчас Купить сейчас Узнать перед покупкой Узнать перед покупкой Бесплатный пример отчета Бесплатный пример отчета

Global Healthcare Generative AI Market – Industry Trends and Forecast to 2031

  • Healthcare
  • Upcoming Report
  • Jun 2024
  • Global
  • 350 Pages
  • Количество таблиц: 220
  • Количество рисунков: 60

Global Healthcare Generative Ai Market

Размер рынка в млрд долларов США

CAGR :  % Diagram

Chart Image USD 3.21 Billion USD 21.59 Billion 2023 2031
Diagram Прогнозируемый период
2024 –2031
Diagram Размер рынка (базовый год)
USD 3.21 Billion
Diagram Размер рынка (прогнозируемый год)
USD 21.59 Billion
Diagram CAGR
%
Diagram Основные игроки рынка
  • Dummy1
  • Dummy2
  • Dummy3
  • Dummy4
  • Dummy5

>Global Healthcare Generative AI Market, By Offering (Hardware, Software, and Services), Technology (Machine Learning and Natural Language Processing), Application (Patient Data & Risk Analysis, Medical Imaging & Diagnostics, Precision Medicine, Drug Discovery, Lifestyle Management & Remote Patient Monitoring, Virtual Assistants, Wearables, In-Patient Care & Hospital Management, Research, Emergency Room & Surgery, Mental Health, Healthcare Assistance, and Robots and Cybersecurity), End User (Hospitals, Healthcare Payers, Pharmaceuticals and Biotechnological Companies, Patients, and Others) – Industry Trends and Forecast to 2031.

Healthcare Generative AI Market

Healthcare Generative AI Market Analysis and Size

In disease diagnosis, applications of generative AI in the healthcare industry utilize advanced algorithms to analyze diverse patient data, including medical imaging scans, genetic information, and clinical records. These AI systems recognize complex patterns and correlations within the data, assisting healthcare professionals in accurately identifying and diagnosing various diseases and medical conditions. With the ability to rapidly process large volumes of data, generative AI facilitates earlier disease detection and timely interventions. Furthermore, these algorithms continually learn and improve from new data inputs, enhancing diagnostic accuracy over time. Ultimately, the application of generative AI in disease diagnosis aims to improve patient outcomes by enabling earlier and more precise diagnoses.

The global healthcare generative AI market size was valued at USD 3.21 billion in 2023 and is projected to reach USD 21.59 billion by 2031, with a CAGR of 26.9% during the forecast period of 2024 to 2031.

In addition to the insights on market scenarios such as market value, growth rate, segmentation, geographical coverage, and major players, the market reports curated by the Data Bridge Market Research also include depth expert analysis, patient epidemiology, pipeline analysis, pricing analysis, and regulatory framework.

Report Scope and Market Segmentation       

Report Metric

Details

Forecast Period

2024-2031

Base Year

2023

Historic Years

2022 (Customizable to 2016-2021)

Quantitative Units

Revenue in USD Million, Volumes in Units, Pricing in USD

Segments Covered

Offering (Hardware, Software, and Services), Technology (Machine Learning and Natural Language Processing), Application (Patient Data & Risk Analysis, Medical Imaging & Diagnostics, Precision Medicine, Drug Discovery, Lifestyle Management & Remote Patient Monitoring, Virtual Assistants, Wearables, In-Patient Care & Hospital Management, Research, Emergency Room & Surgery, Mental Health, Healthcare Assistance, and Robots and Cybersecurity), End User (Hospitals, Healthcare Payers, Pharmaceuticals and Biotechnological Companies, Patients, and Others) 

Countries Covered

U.S., Canada, Mexico, Germany, Italy, U.K., France, Spain, Netherlands, Belgium, Switzerland, Turkey, Russia, Rest of Europe, Japan, China, India, South Korea, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific, Brazil, Argentina, Rest of South America, South Africa, Saudi Arabia, U.A.E., Egypt, Israel, and Rest of Middle East and Africa

Market Players Covered

Koninklijke Philips N.V. (Netherlands), Microsoft (U.S.), Siemens Healthineers AG (Germany), Intel Corporation (U.S.), NVIDIA Corporation (U.S.), Google Inc. (U.S.), GE HealthCare Technologies Inc. (U.S.), Medtronic (Ireland), Micron Technology, Inc (U.S.), Amazon.com Inc (U.S.), Oracle (U.S.), Johnson & Johnson Services, Inc. (U.S.), Merative (U.S.), General Vision, Inc., (U.S.), CloudMedx (U.S.), Oncora Medical (U.S.), Enlitic (U.S.), Lunit Inc., (South Korea), Qure.ai (India), Tempus (U.S.), COTA (U.S.), FDNA INC. (U.S.), Recursion (U.S.), Atomwise (U.S.), Virgin Pulse (U.S.), Babylon Health (U.K.), MDLIVE (U.S.), Stryker (U.S.), Qventus (U.S.), Sweetch (Israel), Sirona Medical, Inc. (U.S.), Ginger (U.S.), and Biobeat (Israel)

Market Opportunities

Market Definition

Healthcare generative AI refers to the application of artificial intelligence (AI) techniques, specifically generative models, in the healthcare sector. These AI systems utilize patient-specific data to generate real-time insights, predictive analytics, and personalized recommendations. By analyzing diverse healthcare data sources, such as electronic health records and medical imaging scans, generative AI aids in clinical decision-making, disease diagnosis, outcome prediction, and treatment selection, ultimately aiming to improve patient care outcomes and streamline healthcare delivery processes.

Healthcare Generative AI Market Dynamics

Drivers                                                                                          

  • Growing Clinical Decision Support Systems

Генеративный ИИ представляет собой инновационный подход в здравоохранении, обещающий преобразовать процесс принятия клинических решений. Используя информацию в реальном времени, предиктивную аналитику и персонализированные рекомендации на основе данных, специфичных для пациента, поставщики медицинских услуг могут использовать генеративный ИИ для улучшения своей практики. Системы поддержки принятия клинических решений, работающие на основе алгоритмов генеративного ИИ, оказывают неоценимую помощь в диагностике заболеваний, прогнозировании результатов лечения пациентов и определении оптимальных вариантов лечения. Эти системы анализируют различные источники данных, такие как электронные медицинские карты и сканы медицинских изображений, генерируя действенные идеи для принятия решений на основе фактических данных в месте оказания помощи. Интеграция использования генеративного ИИ в рабочие процессы здравоохранения может значительно улучшить результаты лечения пациентов, оптимизировать оказание медицинской помощи и сократить расходы на здравоохранение.

  • Открытие и разработка лекарств

Генеративные алгоритмы ИИ обладают преобразующим потенциалом в сфере открытия и разработки лекарств. Они ускоряют идентификацию новых кандидатов на лекарства, уточняют молекулярные структуры и прогнозируют профили эффективности и безопасности. Эти алгоритмы используют обширные наборы данных, охватывающие геномную информацию, конфигурации белков и химические атрибуты, для создания новых молекулярных структур и прогнозирования их взаимодействия с биологическими мишенями. Фармацевтические компании могут использовать генеративный ИИ для оптимизации процесса открытия лекарств, смягчая как временные, так и финансовые барьеры, связанные с выводом новых лекарств на рынок. В конечном итоге этот подход обещает обеспечить более точные и эффективные методы лечения для пациентов.

Например, в январе 2023 года Google сотрудничала с Bayer AG для улучшения доставки лекарств, согласовываясь с потенциалом генеративного ИИ в разработке лекарств. Используя такие решения, как Vertex AI и Med-PaLM 2 от Google Cloud, Bayer стремится ускорить процесс разработки лекарств, используя передовые алгоритмы, способные оптимизировать молекулярные структуры и прогнозировать профили эффективности и безопасности. Это сотрудничество подчеркивает растущую тенденцию использования подходов на основе ИИ для революционных фармацевтических исследований и ускорения доставки инновационных методов лечения пациентам.

Возможности

  • Быстрое развитие искусственного интеллекта (ИИ) и машинного обучения (МО)

Быстрое развитие технологий искусственного интеллекта (ИИ) и машинного обучения (МО) значительно расширило возможности алгоритмов генеративного ИИ в секторе здравоохранения. Эти алгоритмы, используемые компаниями генеративного ИИ в здравоохранении, обладают способностью анализировать огромные объемы данных здравоохранения, включая медицинские изображения, истории болезни пациентов, геномные данные и многое другое, для генерации ценных идей, прогнозов и инновационных решений. Благодаря постоянному прогрессу в технологиях ИИ и МО организации здравоохранения все чаще используют генеративный ИИ для улучшения результатов лечения пациентов, оптимизации клинических рабочих процессов и разработки новых методов лечения и терапии.

  • Растущий спрос на персонализированную медицину

Все больше внимания уделяется персонализированной медицине и точному здравоохранению, где лечение подбирается индивидуально для каждого пациента на основе различных факторов, таких как генетика, медицинское образование и образ жизни. Генеративный ИИ играет ключевую роль в этом сдвиге, поскольку он может анализировать сложные биологические данные и создавать индивидуальные стратегии лечения, предложения по лекарствам и прогностические модели. Поскольку поставщики медицинских услуг и фармацевтические компании стремятся к более точным методам лечения, спрос на генеративный ИИ должен резко возрасти. Этот подход обещает произвести революцию в здравоохранении, предоставляя более эффективные и ориентированные на индивидуальные потребности методы лечения.

Ограничения/Проблемы

  • Высокие затраты на техническое обслуживание

Внедрение и поддержание систем ИИ требуют существенных финансовых вложений, включая расходы на инфраструктуру, обучение персонала и постоянные обновления. Эти расходы могут быть непомерными для многих организаций здравоохранения, особенно с ограниченными бюджетами или ресурсами. Кроме того, потребность в специализированных экспертных знаниях для управления и оптимизации алгоритмов ИИ еще больше увеличивает эксплуатационные расходы. Следовательно, финансовое бремя, связанное с поддержанием генеративных решений ИИ, выступает препятствием для их широкого внедрения и использования в учреждениях здравоохранения.

  • Растущая сложность алгоритмов ИИ

Внедрение и управление системами ИИ в медицинских учреждениях требует специализированных знаний и ресурсов, которых может не хватать многим организациям. Интеграция генеративного ИИ в существующие рабочие процессы и инфраструктуру может быть сложной и трудоемкой. Сложная природа алгоритмов ИИ и их интерпретации также создает проблемы для обеспечения надежности и точности, особенно в критических сценариях принятия решений. Динамичный и развивающийся характер медицинских данных и практик требует постоянных обновлений и уточнений моделей ИИ, что добавляет дополнительные уровни сложности к их развертыванию и обслуживанию в секторе здравоохранения.

В этом отчете о рынке содержатся сведения о последних новых разработках, правилах торговли, анализе импорта-экспорта, анализе производства, оптимизации цепочки создания стоимости, доле рынка, влиянии внутренних и локальных игроков рынка, анализируются возможности с точки зрения новых источников дохода, изменений в правилах рынка, анализ стратегического роста рынка, размер рынка, рост рынка категорий, ниши приложений и доминирование, одобрения продуктов, запуски продуктов, географические расширения, технологические инновации на рынке. Чтобы получить больше информации о рынке, свяжитесь с Data Bridge Market Research для получения аналитического обзора, наша команда поможет вам принять обоснованное рыночное решение для достижения роста рынка.

Недавнее развитие

  • В октябре 2023 года на конференции HLTH 2023 компания Microsoft представила новые решения в области данных и искусственного интеллекта, ориентированные на сектор здравоохранения. С помощью Microsoft Cloud они стремились расширить возможности организаций здравоохранения, предлагая отраслевые решения в области данных в рамках Microsoft Fabric. Эти решения обещали объединить аналитику, упростить интеграцию данных и обеспечить безопасный доступ к информации, в конечном итоге улучшая опыт как пациентов, так и врачей.
  • В ноябре 2023 года компания Koninklijke Philips NV сотрудничала с Vestre Viken Health Trust в Норвегии, внедряя свою платформу AI Manager для революционного изменения рабочих процессов в радиологии. Внедрение приложения для диагностики переломов костей с поддержкой ИИ упростило диагностические процессы, позволив рентгенологам больше сосредоточиться на сложных случаях. Эта амбициозная инициатива охватила 30 больниц, обслуживая около 3,8 млн человек, и стала крупнейшим внедрением ИИ Philips в Европе. Целью этого начинания было улучшение ухода за пациентами и значительное ускорение диагностических процедур.

Масштаб рынка генеративного ИИ в здравоохранении

Рынок сегментирован на основе предложений, технологий, приложений и конечных пользователей. Рост среди этих сегментов поможет вам проанализировать сегменты с незначительным ростом в отраслях и предоставить пользователям ценный обзор рынка и рыночные идеи, которые помогут им принимать стратегические решения для определения основных рыночных приложений.

Предложения

  • Аппаратное обеспечение
    • Процессор
      • МПУ
      • ГПУ
      • ПЛИС
      • ASIC
    • Память
    • Сеть
      • Адаптер
      • Выключатель
      • Интерконнект
  • Программное обеспечение
    • Платформа ИИ
      • Интерфейс прикладного программирования (API)
      • Структура машинного обучения
    • Решения ИИ
      • На территории
      • Облачный
  • Услуги
    • Развертывание и интеграция
    • Поддержка и обслуживание

Технологии

  • Машинное обучение
    • Глубокое обучение
    • Под наблюдением
    • Без присмотра
    • Обучение с подкреплением
    • Другие
  • Обработка естественного языка
    • ИВР
    • ОРС
    • Распознавание образов и изображений
    • Автоматическое кодирование
    • Классификация и категоризация
    • Текстовая аналитика
    • Речевая аналитика
  • Контекстно-зависимые вычисления
    • Контекст устройства
    • Пользовательский контекст
    • Физический контекст
  • Компьютерное зрение

Приложение

  • Данные пациентов и анализ рисков
  • Медицинская визуализация и диагностика
  • Точная медицина
  • Открытие лекарств
  • Управление образом жизни и удаленный мониторинг пациентов
  • Виртуальные помощники
  • Носимые устройства
  • Уход за пациентами и управление больницей
  • Исследовать
  • Отделение неотложной помощи и хирургия
  • Психическое здоровье
  • Роботы для оказания медицинской помощи
  • Кибербезопасность

Конечный пользователь

  • Больницы
  • Плательщики здравоохранения
  • Фармацевтические и биотехнологические компании
  • Пациенты
  • Другие

Региональный анализ/информация о рынке искусственной слюны

Проводится анализ рынка и предоставляются сведения о его размерах и тенденциях по странам, предложениям, технологиям, областям применения и конечным пользователям, как указано выше.

В отчете о рынке рассматриваются следующие страны: США, Канада, Мексика, Германия, Италия, Великобритания, Франция, Испания, Нидерланды, Бельгия, Швейцария, Турция, Россия, остальные страны Европы, Япония, Китай, Индия, Южная Корея, Австралия, Сингапур, Малайзия, Таиланд, Индонезия, Филиппины, остальные страны Азиатско-Тихоокеанского региона, Бразилия, Аргентина, остальные страны Южной Америки, Южная Африка, Саудовская Аравия, ОАЭ, Египет, Израиль, а также остальные страны Ближнего Востока и Африки.

Ожидается, что Северная Америка будет доминировать на рынке, поскольку регион может похвастаться надежной сетью медицинских учреждений, что обеспечивает прочную основу для внедрения технологий. Основные игроки отрасли прочно обосновались в Северной Америке, способствуя конкурентной среде и стимулируя инновации. Кроме того, исключительная инфраструктура здравоохранения региона облегчает интеграцию передовых решений. Наконец, распространенность рака среди большого населения региона еще больше подпитывает спрос на передовые медицинские технологии и методы лечения, укрепляя доминирование Северной Америки на рынке.

Ожидается, что Азиатско-Тихоокеанский регион будет существенно расти из-за правительственных инициатив по продвижению здравоохранения в сочетании с возросшей осведомленностью населения о здоровье, что стимулирует спрос. Большое количество онкологических больных в регионе и растущая потребность в передовых медицинских технологиях для диагностики и лечения дополнительно способствуют этой траектории роста. Кроме того, растущий спрос на качественные медицинские услуги подчеркивает потенциал региона для значительного расширения в секторе здравоохранения.

Раздел отчета по странам также содержит отдельные факторы, влияющие на рынок, и изменения в регулировании на внутреннем рынке, которые влияют на текущие и будущие тенденции рынка. Такие данные, как анализ цепочки создания стоимости сверху и снизу, технические тенденции и анализ пяти сил Портера, тематические исследования, являются некоторыми из указателей, используемых для прогнозирования рыночного сценария для отдельных стран. Кроме того, при предоставлении прогнозного анализа данных по странам учитываются наличие и доступность глобальных брендов и их проблемы, связанные с большой или малой конкуренцией со стороны местных и отечественных брендов, влияние внутренних тарифов и торговых путей.

Рост инфраструктуры здравоохранения, установленная база и проникновение новых технологий

Рынок также предоставляет вам подробный анализ рынка для каждой страны по росту расходов на здравоохранение для капитального оборудования, установленной базы различных видов продуктов для рынка, влияния технологий с использованием кривых жизненной линии и изменений в сценариях регулирования здравоохранения и их влияния на рынок. Данные доступны за исторический период 2016-2021 гг.

Анализ конкурентной среды и рынка генеративного ИИ в здравоохранении

Конкурентная среда рынка содержит сведения о конкурентах. Включены сведения о компании, ее финансах, полученном доходе, рыночном потенциале, инвестициях в исследования и разработки, новых рыночных инициативах, глобальном присутствии, производственных площадках и объектах, производственных мощностях, сильных и слабых сторонах компании, запуске продукта, широте и широте продукта, доминировании приложений. Приведенные выше данные касаются только фокуса компаний на рынке.

Некоторые из основных игроков, работающих на рынке:

  • Конинклийке Philips NV (Нидерланды)
  • Майкрософт (США)
  • Siemens Healthineers AG (Германия)
  • Корпорация Intel (США)
  • NVIDIA Corporation (U.S.)
  • Google Inc. (U.S.)
  • GE HealthCare Technologies Inc. (U.S.)
  • Medtronic (Ireland)
  • Micron Technology, Inc (U.S.)
  • Amazon.com Inc (U.S.)
  • Oracle (U.S.)
  • Johnson & Johnson Services, Inc. (U.S.)
  • Merative (U.S.)
  • General Vision, Inc. (U.S.)
  • CloudMedx (U.S.)
  • Oncora Medical (U.S.)
  • Enlitic (U.S.)
  • Lunit Inc., (South Korea)
  • Qure.ai (India)
  • Tempus (U.S.)
  • COTA (U.S.)
  • FDNA INC. (U.S.)
  • Recursion (U.S.)
  • Atomwise (U.S.)
  • Virgin Pulse (U.S.)
  • Babylon Health (U.K.)
  • MDLIVE (U.S.)
  • Stryker (U.S.)
  • Qventus (U.S.)
  • Sweetch (Israel)
  • Sirona Medical, Inc. (U.S.)
  • Ginger (U.S.)
  • Biobeat (Israel)

SKU-

Get online access to the report on the World's First Market Intelligence Cloud

  • Интерактивная панель анализа данных
  • Панель анализа компании для возможностей с высоким потенциалом роста
  • Доступ аналитика-исследователя для настройки и запросов
  • Анализ конкурентов с помощью интерактивной панели
  • Последние новости, обновления и анализ тенденций
  • Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Запросить демонстрацию

Методология исследования

Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.

Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.

Доступна настройка

Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.

Часто задаваемые вопросы

Рынок сегментирован на основе Global Healthcare Generative AI Market, By Offering (Hardware, Software, and Services), Technology (Machine Learning and Natural Language Processing), Application (Patient Data & Risk Analysis, Medical Imaging & Diagnostics, Precision Medicine, Drug Discovery, Lifestyle Management & Remote Patient Monitoring, Virtual Assistants, Wearables, In-Patient Care & Hospital Management, Research, Emergency Room & Surgery, Mental Health, Healthcare Assistance, and Robots and Cybersecurity), End User (Hospitals, Healthcare Payers, Pharmaceuticals and Biotechnological Companies, Patients, and Others) – Industry Trends and Forecast to 2031. .
Размер Global Healthcare Generative AI Market в 2023 году оценивался в 3.21 USD Billion долларов США.
Ожидается, что Global Healthcare Generative AI Market будет расти со среднегодовым темпом роста (CAGR) 26.9% в течение прогнозируемого периода 2024–2031.
Отчет по рынку охватывает данные из U.S., Canada, Mexico, Germany, Italy, U.K., France, Spain, Netherlands, Belgium, Switzerland, Turkey, Russia, Rest of Europe, Japan, China, India, South Korea, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific, Brazil, Argentina, Rest of South America, South Africa, Saudi Arabia, U.A.E., Egypt, Israel, and Rest of Middle East and Africa.
Testimonial