Global Graph Database Market Size, Share, and Trends Analysis Report – Industry Overview and Forecast to 2031

Запрос на TOC Запрос на TOC Обратиться к аналитику Обратиться к аналитику Купить сейчас Купить сейчас Узнать перед покупкой Узнать перед покупкой Бесплатный пример отчета Бесплатный пример отчета

Global Graph Database Market Size, Share, and Trends Analysis Report – Industry Overview and Forecast to 2031

  • ICT
  • Upcoming Report
  • Nov 2024
  • Global
  • 350 Pages
  • Количество таблиц: 220
  • Количество рисунков: 60

Global Graph Database Market

Размер рынка в млрд долларов США

CAGR :  % Diagram

Diagram Прогнозируемый период
2024 –2031
Diagram Размер рынка (базовый год)
USD 2.29 Billion
Diagram Размер рынка (прогнозируемый год)
USD 8.72 Billion
Diagram CAGR
%
Diagram Основные игроки рынка
  • Dummy1
  • Dummy2
  • Dummy3
  • Dummy4
  • Dummy5

Global Graph Database Market Segmentation, By Type (Resource Description Framework (RDF) and Labeled Property Graph (LPG)), Application (Fraud Detection, Prevention and Recommendation Engine), Database (Relational (SQL) and Non-relational (NoSQL)), Deployment Model (On-premise and Cloud), Analysis Type (Path Analysis, Connectivity Analysis, Community Analysis, and Centrality Analysis), Size (Large Enterprises, Small and Medium Enterprises), Component (Software and Services), End User (Banking, Financial Services and Insurance, Telecom and IT, Healthcare and Lifesciences, Transportation and Logistics, Retail and E-commerce, Energy and Utilities, Government and Public, Manufacturing, and Others) – Industry Trends and Forecast to 2031

Global Graph Database Market

Graph Database Market Analysis

The graph database market is experiencing significant growth, driven by the increasing need for advanced data management solutions that can efficiently handle complex relationships within large datasets. Graph databases, which utilize graph structures to represent and store data, offer enhanced performance for applications requiring real-time analytics and flexible data modeling. Their ability to seamlessly connect diverse data points makes them ideal for various sectors, including finance, telecommunications, and social networking. Recent developments, such as the integration of artificial intelligence and machine learning capabilities, further enhance the functionality of graph databases, enabling businesses to gain deeper insights and improve decision-making. Additionally, the growing adoption of cloud-based graph database solutions is expanding accessibility and reducing operational costs. As organizations continue to prioritize data-driven strategies, the graph database market is poised for robust growth in the coming years, reflecting a broader trend toward more sophisticated data architectures.

Graph Database Market Size

The global graph database market size was valued at USD 2.29 billion in 2023 and is projected to reach USD 8.72 billion by 2031, with a CAGR of 18.20% during the forecast period of 2024 to 2031. In addition to the market insights such as market value, growth rate, market segments, geographical coverage, market players, and market scenario, the market report curated by the Data Bridge Market Research team includes in-depth expert analysis, import/export analysis, pricing analysis, production consumption analysis, and pestle analysis.

Graph Database Market Trends

“Increasing Adoption of Cloud-Based Graph Databases”

Рынок графовых баз данных стремительно развивается, чему способствуют инновации, которые улучшают возможности подключения и аналитики данных. Одной из заметных тенденций является растущее внедрение облачных графовых баз данных, которые обеспечивают масштабируемость, гибкость и снижение затрат на инфраструктуру. Эти решения позволяют организациям использовать мощь графовых баз данных без бремени управления локальным оборудованием. Кроме того, достижения в области машинного обучения и искусственного интеллекта интегрируются в графовые базы данных, обеспечивая прогнозную аналитику и более глубокое понимание сложных взаимосвязей данных. Эта тенденция особенно значима в таких секторах, как финансы и здравоохранение, где понимание сложных связей данных имеет решающее значение для повышения операционной эффективности и принятия решений. Поскольку эти инновации продолжают формировать рынок, организации лучше подготовлены к использованию всего потенциала своих данных.

Отчет о сфере применения и графическая база данных Сегментация рынка    

Атрибуты

База данных Graph. Ключевые рыночные данные

Охваченные сегменты

  • По типу : Структура описания ресурсов (RDF) и Граф маркированных свойств (LPG)
  • По применению: Система обнаружения, предотвращения и предоставления рекомендаций по мошенничеству
  • По базам данных: реляционные (SQL) и нереляционные (NoSQL)
  • По модели развертывания: локально и в облаке
  • По типу анализа: анализ пути, анализ связности, анализ сообщества и анализ центральности
  • По размеру: крупные предприятия, малые и средние предприятия
  • По компоненту: программное обеспечение и услуги
  • По конечному пользователю: банковское дело, финансовые услуги и страхование, телекоммуникации и ИТ, здравоохранение и науки о жизни, транспорт и логистика, розничная торговля и электронная коммерция, энергетика и коммунальные услуги, правительство и общественность, производство и другие

Страны, охваченные

США, Канада и Мексика в Северной Америке, Германия, Франция, Великобритания, Нидерланды, Швейцария, Бельгия, Россия, Италия, Испания, Турция, Остальная Европа в Европе, Китай, Япония, Индия, Южная Корея, Сингапур, Малайзия, Австралия, Таиланд, Индонезия, Филиппины, Остальная часть Азиатско-Тихоокеанского региона (APAC) в Азиатско-Тихоокеанском регионе (APAC), Саудовская Аравия, ОАЭ, Южная Африка, Египет, Израиль, Остальной Ближний Восток и Африка (MEA) как часть Ближнего Востока и Африки (MEA), Бразилия, Аргентина и Остальная часть Южной Америки как часть Южной Америки

Ключевые игроки рынка

Hewlett Packard Enterprise Development LP (США), IBM (США), Microsoft (США), Siemens (Германия), ANSYS, Inc. (США), SAP SE (Германия), Oracle (США), Robert Bosch GmbH (Германия), Atos SE (Франция), ABB (Швейцария), Kellton (Индия), AVEVA Group Limited (Великобритания), DXC Technology Company (США), Altair Engineering, Inc. (США), Hexaware Technologies Limited (Индия), Tata Consultancy Services Limited (Индия), Infosys Limited (Индия), NTT DATA Group Corporation (Япония), Cloud Software Group, Inc. (США), Redis Ltd (США)

Возможности рынка

  • Более широкое внедрение в здравоохранении и биологических науках
  • Расширение в области Интернета вещей и умных городов

Информационные наборы данных с добавленной стоимостью

Помимо таких рыночных данных, как рыночная стоимость, темпы роста, сегменты рынка, географический охват, участники рынка и рыночный сценарий, рыночный отчет, подготовленный командой Data Bridge Market Research, включает в себя углубленный экспертный анализ, анализ импорта/экспорта, анализ цен, анализ потребления продукции и анализ пестицидов.

Определение рынка графических баз данных

Графовая база данных — это тип базы данных NoSQL, предназначенный для хранения, управления и запроса тесно взаимосвязанных данных. В отличие от традиционных реляционных баз данных, которые организуют данные в строках и таблицах, графовые базы данных используют узлы, ребра и свойства для представления и соединения точек данных напрямую. Узлы представляют сущности (например, людей или продукты), ребра представляют отношения между этими сущностями, а свойства хранят соответствующие сведения об обоих. Такая структура позволяет графовым базам данных быстро и эффективно анализировать сложные отношения, что делает их идеальными для таких приложений, как социальные сети, обнаружение мошенничества, рекомендательные системы и сетевой анализ, где понимание связей данных имеет важное значение.

Динамика рынка графических баз данных

Драйверы

  • Растущая потребность в аналитике данных в реальном времени

Спрос на анализ больших и сложных данных в режиме реального времени растет во всех отраслях, что обусловлено потребностью в более точных данных в приложениях с высокими ставками, таких как обнаружение мошенничества, рекомендательные системы и анализ социальных сетей. Традиционные базы данных борются со сложной сетью взаимосвязей в этих типах данных, что делает графовые базы данных идеальным решением благодаря их эффективности в управлении и запросе связанных данных. Графовые базы данных позволяют организациям мгновенно визуализировать и анализировать взаимосвязи данных, раскрывая скрытые закономерности и улучшая процесс принятия решений. Эта способность обрабатывать высокосвязанные данные в режиме реального времени является существенным фактором роста рынка для технологии графовых баз данных.

  • Рост популярности облачных решений

Решения на основе облачных графовых баз данных преобразуют способ, которым организации развертывают и управляют графовыми технологиями, предлагая оптимизированную, масштабируемую и гибкую инфраструктуру. В отличие от локальных решений, облачные графовые базы данных позволяют компаниям масштабировать ресурсы по мере необходимости, делая их доступными и экономически эффективными как для малых, так и для крупных предприятий. Такая гибкость особенно полезна в отраслях, которые испытывают нестабильные нагрузки данных или требуют быстрого развертывания, поскольку она минимизирует первоначальные затраты и требования к инфраструктуре. Кроме того, облачные решения упрощают обслуживание и обновления, позволяя организациям сосредоточиться на извлечении информации из данных, а не на управлении оборудованием. Такая масштабируемость и простота развертывания стимулируют рост внедрения облачных графовых баз данных.

Возможности

  • Более широкое внедрение в здравоохранении и биологических науках

Графовые базы данных имеют уникальные возможности для поддержки достижений в области здравоохранения, особенно в таких областях, как открытие лекарств, геномика и управление данными пациентов. По мере расширения областей персонализированной медицины и точного здравоохранения способность анализировать сложные сети биомедицинских данных становится решающей. Графовые базы данных могут быстро отображать и интерпретировать сложные взаимосвязи в генетических данных, путях заболеваний и историях болезни пациентов, предлагая идеи, которые традиционные базы данных с трудом раскрывают. Например, в открытии лекарств графовые базы данных помогают выявлять связи между соединениями, целями и заболеваниями, ускоряя сроки исследований. Эта способность выявлять критические биомедицинские взаимосвязи является значительной возможностью роста в секторе здравоохранения для технологии графовых баз данных.

  • Расширение в области Интернета вещей и умных городов

Стремительный рост числа устройств IoT создает обширные сети взаимосвязанных интеллектуальных датчиков и систем, особенно в умных городах и промышленных приложениях IoT. Графовые базы данных предлагают эффективное решение для управления и анализа этих сложных сетей, позволяя в реальном времени получать информацию по нескольким устройствам и точкам данных. Например, в умных городах графовые базы данных могут поддерживать управление дорожным движением, анализируя закономерности в реальном времени для оптимизации потока и уменьшения заторов. Аналогичным образом, в промышленном IoT они облегчают предиктивное обслуживание, выявляя аномалии оборудования и прогнозируя сбои. Эта способность эффективно обрабатывать крупномасштабные взаимосвязанные сети данных представляет собой сильную возможность роста для графовых баз данных в приложениях IoT.

Ограничения/Проблемы

  • Ограниченный опыт работы с рабочей силой

The graph database market is significantly impacted by a shortage of professionals with the necessary expertise in graph database technologies. This scarcity of skilled personnel presents a major challenge for organizations seeking to implement and maintain these advanced systems. As companies look to adopt graph databases for their ability to manage complex data relationships, the lack of qualified individuals for tasks such as setup, optimization, and ongoing maintenance becomes a barrier to successful integration. This skills gap hinders the effective deployment of graph database solutions slows overall market growth, as organizations may delay adoption due to concerns over support and expertise.

  • Lack of Standardization

The lack of uniform standards in graph database technologies poses a significant restraint in the market, particularly for organizations managing diverse database ecosystems. Unlike relational databases, which follow well-defined structures and standards, graph databases vary widely in data models, query languages, and storage approaches. This inconsistency leads to compatibility and interoperability issues, making it difficult for businesses to integrate graph databases seamlessly with existing systems. Companies with complex, multi-database environments often face added costs and complexities, as they may need custom solutions or middleware to bridge these gaps, which hinders the broader adoption of graph databases across industries.

Graph Database Market Scope

The market is segmented on the basis of type, application, database, deployment model, analysis type, size, component, and end user. The growth amongst these segments will help you analyze meagre growth segments in the industries and provide the users with a valuable market overview and market insights to help them make strategic decisions for identifying core market applications.

  Type

  • Resource Description Framework (RDF)
  • Labeled Property Graph (LPG)

Application

  • Fraud Detection
  • Prevention
  • Recommendation Engine

Database

  • Relational (SQL)
  • Non-relational (NoSQL)

Deployment Model

  • On-premise
  • Cloud

Analysis Type

  • Path Analysis
  • Connectivity Analysis
  • Community Analysis
  • Centrality Analysis

Size

  • Large Enterprises
  • Small and Medium Enterprises

Component

  • Software
  • Services

End User

  • Banking
  • Financial Services and Insurance
  • Telecom and IT
  • Healthcare and Lifesciences
  • Transportation and Logistics
  • Retail and E-commerce
  • Energy and Utilities
  • Government and Public
  • Manufacturing
  • Others

Graph Database Market Regional Analysis

The market is analyzed and market size insights and trends are provided by type, application, database, deployment model, analysis type, size, component, and end user as referenced above.

The countries covered in the market report are U.S., Canada, Mexico in North America, Germany, Sweden, Poland, Denmark, Italy, U.K., France, Spain, Netherland, Belgium, Switzerland, Turkey, Russia, Rest of Europe in Europe, Japan, China, India, South Korea, New Zealand, Vietnam, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in Asia-Pacific (APAC), Brazil, Argentina, Rest of South America as a part of South America, U.A.E, Saudi Arabia, Oman, Qatar, Kuwait, South Africa, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA).

North America leads the graph database market in revenue and market share, primarily due to the presence of established fintech solutions and the region's early adoption of this technology. Additionally, continuous advancements in information technology are expected to further accelerate market growth in North America. The combination of a robust tech ecosystem and innovative developments positions this region at the forefront of the graph database industry.

Asia-Pacific region is anticipated to achieve the highest compound annual growth rate from 2024 to 2031, driven by the growing opportunities for smaller graph database vendors to introduce innovative solutions across various sectors. This surge in demand is fueled by the region's rapidly evolving technology landscape and the increasing recognition of the benefits of graph databases in managing complex data relationships. As more industries in Asia-Pacific embrace digital transformation, the market for graph database solutions is expected to expand significantly.

The country section of the report also provides individual market impacting factors and changes in market regulation that impact the current and future trends of the market. Data points such as down-stream and upstream value chain analysis, technical trends and porter's five forces analysis, case studies are some of the pointers used to forecast the market scenario for individual countries. Also, the presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of domestic tariffs and trade routes are considered while providing forecast analysis of the country data.

Graph Database Market Share

The market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies' focus related to market.

Graph Database Market Leaders Operating in the Market Are:

  • Hewlett Packard Enterprise Development LP (U.S.)
  • IBM (U.S.)
  • Microsoft (U.S.)
  • Siemens (Germany)
  • ANSYS, Inc. (U.S.)
  • SAP SE (Germany)
  • Oracle (U.S.)
  • Robert Bosch GmbH (Germany)
  • Atos SE (France)
  • ABB (Switzerland)
  • Kellton (India)
  • AVEVA Group Limited (U.K.)
  • DXC Technology Company (U.S.)
  • Altair Engineering, Inc. (U.S.)
  • Hexaware Technologies Limited. (India)
  • Tata Consultancy Services Limited (India)
  • Infosys Limited (India)
  • NTT DATA Group Corporation (Japan)
  • Cloud Software Group, Inc. U.S.)
  • Redis Ltd (U.S.)

Latest Developments in Graph Database Market

  • In May 2023, AWS partnered with Neo4j, a key player in defining the graph database landscape and setting open-source standards. As an AWS Marketplace seller, Neo4j has established itself as a leader in the graph database space. Additionally, the company has earned the AWS Data and Analytics Competency, highlighting its expertise in delivering advanced data solutions on the AWS platform
  • In May 2023, SAP and Google Cloud announced an enhanced partnership, featuring the launch of a comprehensive open data offering aimed at streamlining data landscapes and maximizing the potential of business data. This new initiative combines SAP's and Google Cloud's data and analytics technologies to enhance the accessibility and utility of enterprise data. Furthermore, it aims to propel advancements in enterprise artificial intelligence development, facilitating greater innovation and insights for businesses
  • In April 2023, Neo4j partnered with Imperium Solutions to address the rising demand for graph technology in Singapore. Through this collaboration, Imperium Solutions will help customers unlock the full potential of Neo4j, the leading graph database provider known for solving complex, enterprise-level challenges. This partnership aims to enhance the ability to efficiently identify relationships and patterns within vast datasets, driving greater value for businesses in the region
  • In February 2023, IBM announced its acquisition of StepZen Inc., the creator of a GraphQL server with an innovative architecture that enables developers to build GraphQL APIs rapidly and with minimal coding. StepZen is designed for high flexibility, seamlessly integrating with various API approaches. Additionally, it is offered as a Software as a Service (SaaS) solution, while also supporting deployments in private clouds and on-premises data centers, catering to diverse business needs
  • In December 2022, LSEG and Microsoft entered into a 10-year strategic partnership aimed at developing next-generation data and analytics solutions, alongside cloud infrastructure enhancements. As part of this collaboration, Microsoft will make an equity investment in LSEG through a share acquisition. The partnership will leverage Microsoft Azure, artificial intelligence, and Microsoft Teams to design LSEG's data infrastructure and create innovative productivity, data analytics, and modeling solutions for users


SKU-

Get online access to the report on the World's First Market Intelligence Cloud

  • Интерактивная панель анализа данных
  • Панель анализа компании для возможностей с высоким потенциалом роста
  • Доступ аналитика-исследователя для настройки и запросов
  • Анализ конкурентов с помощью интерактивной панели
  • Последние новости, обновления и анализ тенденций
  • Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Запросить демонстрацию

Методология исследования

Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.

Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.

Доступна настройка

Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.

Часто задаваемые вопросы

The Growing usage of graph database technology and Increasing demand for solutions with the capability to process low-latency queries are the growth drivers of the Graph Database Market.
The type, application, database, deployment model, analysis type, size, component and end user are the factors on which the Graph Database Market research is based.
The major companies in the Graph Database Market are Teradata (U.S.), Hewlett Packard Enterprise Development LP (U.S.), IBM Corporation (U.S.), Microsoft (U.S.), Siemens AG (Germany), ANSYS, Inc (U.S.), SAP SE (Germany), Oracle (U.S.), Robert Bosch GmbH (Germany), Swim.ai, Inc. (U.S.)., Atos S.E. (France), ABB (Switzerland), KELLTON TECH (India), AVEVA Group plc (U.K.), DXC Technology Company (U.S.), Altair Engineering, Inc (U.S.), Hexaware Technologies Limited (India), Tata Consultancy Services Limited (India), Infosys Limited (India), NTT DATA, Inc. (Japan), TIBCO Software Inc. (U.S.), Redis Ltd (U.S.).