Global Generative Ai In Healthcare Market
Размер рынка в млрд долларов США
CAGR : %
Прогнозируемый период |
2024 –2031 |
Размер рынка (базовый год) |
USD 1.80 Billion |
Размер рынка (прогнозируемый год) |
USD 17.20 Billion |
CAGR |
|
Основные игроки рынка |
Глобальный рынок генеративного ИИ на здравоохранении по сферам применения (персонализированное лечение, помощь пациентам, мониторинг состояния пациентов и предиктивная аналитика , анализ и диагностика медицинских изображений, открытие и разработка лекарственных препаратов), конечный пользователь (больницы, специализированные клиники, амбулаторные хирургические центры (ASC), научно-исследовательские и академические институты, другие) — тенденции отрасли и прогноз до 2031 года.
Генеративный ИИ в анализе и размере рынка здравоохранения
Рынок привлек генеративный ИИ из-за его способности создавать надежные и инновационные данные, тем самым улучшая диагностику, воспроизводя ответы пациентов и предоставляя синтетические наборы данных для тестирования и обучения. Как сообщается в статье 2024 Life Sciences and Health Care Generative AI Outlook Survey, отрасль здравоохранения вкладывает значительные средства в раскрытие преобразующих возможностей генеративного ИИ, при этом около 75% крупных медицинских компаний в настоящее время экспериментируют или планируют масштабировать генеративный ИИ. Таким образом, растущая популярность генеративного ИИ открывает новые возможности в секторе здравоохранения.
Data Bridge Market Research анализирует, что глобальный рынок генеративного ИИ в здравоохранении, который в 2023 году составил 1,8 млрд долларов США, как ожидается, достигнет 17,20 млрд долларов США к 2031 году и, как ожидается, будет претерпевать среднегодовой темп роста в 32,60% в течение прогнозируемого периода. Это указывает на то, что рыночная стоимость. «Персонализированное лечение» доминирует в сегменте приложений глобального рынка генеративного ИИ в здравоохранении из-за растущего спроса на ИИ в здравоохранении, возникшего из-за преобразующего воздействия в отрасли здравоохранения, революционизирующего медицинскую практику. В дополнение к информации о рыночных сценариях, таких как рыночная стоимость, темпы роста, сегментация, географический охват и основные игроки, рыночные отчеты, курируемые Data Bridge Market Research, также включают в себя углубленный экспертный анализ, эпидемиологию пациентов, анализ конвейера, анализ ценообразования и нормативную базу.
Область отчета и сегментация рынка
Отчет Метрика |
Подробности |
Прогнозируемый период |
2024-2031 |
Базовый год |
2023 |
Исторические годы |
2022 (Можно настроить на 2016-2021) |
Количественные единицы |
Выручка в млрд долл. США, объемы в единицах, цены в долл. США |
Охваченные сегменты |
Применение (персонализированное лечение, помощь пациентам, мониторинг состояния пациентов и прогностическая аналитика, анализ и диагностика медицинских изображений, открытие и разработка лекарственных препаратов), конечный пользователь (больницы, специализированные клиники, амбулаторные хирургические центры (ASC), научно-исследовательские и академические институты, другие) |
Страны, охваченные |
США, Канада, Мексика, Великобритания, Германия, Франция, Испания, Италия, Нидерланды, Швейцария, Россия, Бельгия, Турция, остальные страны Европы, Китай, Южная Корея, Япония, Индия, Австралия, Сингапур, Малайзия, Индонезия, Таиланд, Филиппины, остальные страны Азиатско-Тихоокеанского региона, Южная Африка, остальные страны Ближнего Востока и Африки, Бразилия и остальные страны Южной Америки |
Охваченные участники рынка |
Epic Systems Corporation (США), DiagnaMed Holdings Corp. (США), Syntegra (США), Merative (США), Google LLC (США), Oracle (США), Microsoft (США), NVIDIA Corporation (США), Insilico Medicine (США), Abridge AI, Inc. (США), ELEKS (Эстония), Persistent Systems (Индия) |
Возможности рынка |
|
Определение рынка
Генеративный ИИ в здравоохранении относится к применению методов искусственного интеллекта (ИИ), которые включают генерацию новых и оригинальных данных. Кроме того, в секторе здравоохранения генеративный ИИ используется для таких задач, как генерация синтетических медицинских изображений, создание виртуальных данных пациентов для обучения алгоритмов здравоохранения, моделирование прогрессирования заболеваний и даже разработка новых молекул для открытия лекарств.
Динамика мирового рынка генеративного ИИ в здравоохранении
Драйверы
- Достижения в области технологий искусственного интеллекта и машинного обучения
Непрерывное развитие технологий искусственного интеллекта (ИИ) и машинного обучения (МО) значительно расширило возможности алгоритмов генеративного ИИ. Эти достижения позволяют поставщикам медицинских услуг использовать генеративный ИИ для таких задач, как открытие лекарств, анализ медицинских изображений, персонализированная медицина и предиктивная аналитика.
- Растущий спрос на персонализированные решения в области здравоохранения
Растет спрос на персонализированные решения в области здравоохранения, адаптированные к потребностям отдельных пациентов. Генеративные алгоритмы ИИ могут анализировать большие наборы данных, включая геномные данные, истории болезни пациентов и клинические испытания , для разработки персонализированных планов лечения и терапии. Такой персонализированный подход к здравоохранению может привести к лучшим результатам для пациентов и повышению эффективности предоставления медицинских услуг.
- Растущая потребность в открытии и разработке лекарственных препаратов
Фармацевтическая промышленность сталкивается с трудностями в области открытия и разработки лекарств, включая длительные сроки разработки, высокие затраты и низкие показатели успеха. Технологии генеративного ИИ предлагают потенциал для ускорения процесса открытия лекарств путем прогнозирования молекулярных структур, выявления потенциальных кандидатов на лекарства и оптимизации дизайна лекарств. В результате фармацевтические компании все чаще используют решения генеративного ИИ для оптимизации процессов открытия и разработки лекарств.
- Рост инвестиций в учреждения здравоохранения
Растущее внимание к улучшению состояния медицинских учреждений и улучшению общей инфраструктуры здравоохранения является еще одним важным фактором, способствующим росту рынка. Растущее число партнерств и стратегических партнерств между государственными и частными игроками, касающихся финансирования и применения новых и улучшенных технологий, еще больше создает прибыльные рыночные возможности.
Возможности
- Растущее внедрение анализа медицинских изображений
Медицинская визуализация играет решающую роль в диагностике заболеваний, планировании лечения и мониторинге результатов лечения пациентов. Генеративные алгоритмы ИИ могут анализировать данные медицинской визуализации, такие как МРТ , КТ и рентгеновские снимки, чтобы помочь медицинским работникам выявлять отклонения, прогнозировать прогрессирование заболеваний и повышать точность диагностики. Растущее внедрение генеративного ИИ для анализа медицинской визуализации стимулирует рост рынка и производит революцию в области радиологии и диагностической визуализации.
- Эффективность работы здравоохранения и снижение затрат
Приложения генеративного ИИ предлагают возможности для оптимизации операций здравоохранения, автоматизации повторяющихся задач и оптимизации распределения ресурсов в медицинских учреждениях. Например, генеративная предиктивная аналитика на основе ИИ может прогнозировать прием пациентов, оптимизировать уровни укомплектования персоналом и улучшать управление запасами, что приводит к снижению эксплуатационных расходов, повышению эффективности рабочего процесса и лучшему использованию ресурсов.
Ограничения
- Проблемы конфиденциальности и безопасности данных
Генеративные алгоритмы ИИ требуют доступа к большим объемам конфиденциальных данных пациентов, включая медицинские записи, геномную информацию и диагностические изображения. Однако опасения по поводу конфиденциальности данных, нарушений безопасности и соответствия нормативным требованиям представляют собой существенные препятствия для широкого внедрения. Медицинские организации должны ориентироваться в сложных правилах, таких как HIPAA в США и GDPR в Европейском союзе, чтобы гарантировать этическое и безопасное использование данных пациентов, что может ограничивать обмен данными и сотрудничество между учреждениями.
- Отсутствие взаимодействия и стандартизации
Индустрия здравоохранения охватывает разнообразную экосистему систем электронных медицинских карт (EHR), медицинских устройств и форматов данных, что приводит к проблемам в области взаимодействия и стандартизации данных. Несогласованные форматы данных и разрозненные информационные системы препятствуют бесшовной интеграции генеративных решений ИИ в существующие рабочие процессы здравоохранения. Без стандартизированных форматов данных и совместимых систем поставщики медицинских услуг могут испытывать трудности с доступом к данным и их эффективным обменом, что ограничивает масштабируемость и влияние генеративных приложений ИИ.
Вызовы
- Этические и нормативные соображения
Внедрение генеративного ИИ в здравоохранение поднимает сложные этические и нормативные вопросы, связанные с подотчетностью, прозрачностью, предвзятостью и справедливостью. Поставщики медицинских услуг должны бороться с такими проблемами, как алгоритмическая предвзятость, информированное согласие и интерпретируемость решений, принимаемых на основе ИИ, чтобы обеспечить безопасность и доверие пациентов. Более того, регулирующие органы сталкиваются с трудностями при адаптации существующих структур для управления использованием ИИ в здравоохранении, что приводит к неопределенности в отношении требований ответственности, надзора и соответствия.
- Ограниченная клиническая проверка и доказательная база
Хотя генеративные алгоритмы ИИ обещают революционизировать предоставление медицинских услуг и исследования, многим приложениям не хватает надежной клинической проверки и доказательств, демонстрирующих их эффективность, точность и безопасность в реальных условиях. Поставщики медицинских услуг и регулирующие органы требуют проведения строгих валидационных исследований и клинических испытаний для оценки надежности и клинической полезности генеративных решений ИИ перед их широким внедрением. Без достаточных доказательств, подтверждающих их эффективность и надежность, генеративные технологии ИИ могут столкнуться со скептицизмом со стороны заинтересованных сторон в сфере здравоохранения и нежеланием интегрировать их в клиническую практику.
Этот отчет о глобальном генеративном ИИ на рынке здравоохранения содержит подробную информацию о новых последних разработках, правилах торговли, анализе импорта-экспорта, анализе производства, оптимизации цепочки создания стоимости, доле рынка, влиянии внутренних и локальных игроков рынка, анализирует возможности с точки зрения новых источников дохода, изменений в правилах рынка, анализ стратегического роста рынка, размер рынка, рост рынка категорий, ниши приложений и доминирование, одобрения продуктов, запуски продуктов, географические расширения, технологические инновации на рынке. Чтобы получить больше информации о глобальном генеративном ИИ на рынке здравоохранения, свяжитесь с Data Bridge Market Research для получения аналитического обзора, наша команда поможет вам принять обоснованное рыночное решение для достижения роста рынка.
Последние события
- В декабре 2023 года Merck представила Aiddison — новаторское программное обеспечение как услуга для разработки лекарств. Эта платформа объединила виртуальный дизайн и технологичность посредством интеграции программного интерфейса (API) ретросинтеза Synthia. Целью запуска было ускорение разработки лекарств с возможностью ускорения процесса примерно на 70% по сравнению с традиционным процессом
- В августе 2023 года Cognizant расширила сотрудничество с Google Cloud, используя генеративный ИИ для улучшения административных процессов, стремясь к оптимизации затрат и улучшению пользовательского опыта. Это совместное партнерство было направлено на укрепление решений в сфере здравоохранения, повышение эффективности бизнеса и улучшение пользовательского опыта
Глобальный генеративный ИИ на рынке здравоохранения
Глобальный рынок генеративного ИИ в здравоохранении сегментирован на основе применения и конечного пользователя. Рост среди этих сегментов поможет вам проанализировать сегменты с незначительным ростом в отраслях и предоставить пользователям ценный обзор рынка и рыночные идеи, которые помогут им принимать стратегические решения для определения основных рыночных приложений.
Приложение
- Персонализированное лечение
- Помощь пациентам
- Мониторинг пациентов и прогностическая аналитика
- Анализ медицинских изображений и диагностика
- Открытие и разработка лекарственных препаратов
Конечный пользователь
- Больницы
- Специализированные клиники
- Амбулаторные хирургические центры (ASC)
- Научно-исследовательские и академические институты
- Другие
Глобальный генеративный ИИ на региональном рынке здравоохранения. Анализ/идеи
Проведен анализ мирового рынка генеративного ИИ в здравоохранении, а также предоставлены сведения о размерах рынка и тенденциях по странам, областям применения и конечным пользователям, как указано выше.
В отчете о мировом рынке генеративного ИИ в здравоохранении рассматриваются следующие страны: США, Канада, Мексика, Великобритания, Германия, Франция, Испания, Италия, Нидерланды, Швейцария, Россия, Бельгия, Турция, остальные страны Европы, Китай, Япония, Индия, Австралия, Южная Корея, Сингапур, Таиланд, Малайзия, Индонезия, Филиппины, остальные страны Азиатско-Тихоокеанского региона, Бразилия, остальные страны Южной Америки в Южной Америке, Южная Африка и остальные страны Ближнего Востока и Африки в Ближнем Востоке и Африке.
Регион Северной Америки доминирует на мировом рынке генеративного ИИ в здравоохранении благодаря росту внедрения ИИ в здравоохранении, присутствию основных игроков на рынке и возросшему технологическому прогрессу в регионе.
Прогнозируется, что Азиатско-Тихоокеанский регион будет наблюдать значительный рост глобального рынка генеративного ИИ в здравоохранении из-за быстрой потребности в телемедицине и поддержке здравоохранения. Более того, модернизация и развитие телекоммуникаций, как ожидается, будут способствовать росту глобального рынка генеративного ИИ в здравоохранении в регионе в ближайшие годы.
Раздел отчета по странам также содержит отдельные факторы, влияющие на рынок, и изменения в регулировании на внутреннем рынке, которые влияют на текущие и будущие тенденции рынка. Такие данные, как анализ цепочки создания стоимости сверху и снизу, технические тенденции и анализ пяти сил Портера, тематические исследования, являются некоторыми из указателей, используемых для прогнозирования рыночного сценария для отдельных стран. Кроме того, при предоставлении прогнозного анализа данных по странам учитываются наличие и доступность глобальных брендов и их проблемы, связанные с большой или малой конкуренцией со стороны местных и отечественных брендов, влияние внутренних тарифов и торговых путей.
Рост инфраструктуры здравоохранения, установленная база и проникновение новых технологий
Глобальный генеративный ИИ на рынке здравоохранения также предоставляет вам подробный анализ рынка для каждой страны по росту расходов на здравоохранение на капитальное оборудование, установленной базе различных видов продуктов для глобального генеративного ИИ на рынке здравоохранения, влиянию технологий с использованием кривых жизненного цикла и изменениям в сценариях регулирования здравоохранения и их влиянию на глобальный генеративный ИИ на рынке здравоохранения.
Конкурентная среда и глобальный анализ доли рынка генеративного ИИ в здравоохранении
Глобальный генеративный ИИ на рынке здравоохранения конкурентный ландшафт предоставляет детали по конкурентам. Подробности включают обзор компании, финансы компании, полученный доход, рыночный потенциал, инвестиции в исследования и разработки, новые рыночные инициативы, глобальное присутствие, производственные площадки и объекты, производственные мощности, сильные и слабые стороны компании, запуск продукта, широта и широта продукта, доминирование приложений. Приведенные выше точки данных связаны только с фокусом компаний, связанным с глобальным генеративным ИИ на рынке здравоохранения.
Некоторые из основных игроков, работающих на мировом рынке генеративного ИИ в здравоохранении:
- Корпорация Epic Systems (США)
- DiagnaMed Holdings Corp. (США)
- Синтегра (США)
- Мератив (США)
- Google LLC (США)
- Оракул (США)
- Майкрософт (США)
- Корпорация NVIDIA (США)
- Insilico Medicine (США)
- Abridge AI, Inc. (США)
- ЭЛЕКС (Эстония)
- Постоянные системы (Индия)
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Интерактивная панель анализа данных
- Панель анализа компании для возможностей с высоким потенциалом роста
- Доступ аналитика-исследователя для настройки и запросов
- Анализ конкурентов с помощью интерактивной панели
- Последние новости, обновления и анализ тенденций
- Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Методология исследования
Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.
Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.
Доступна настройка
Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.