Global Fraud Detection Transaction Monitoring Market Size, Share, and Trends Analysis Report – Industry Overview and Forecast to 2031

Запрос на TOC Запрос на TOC Обратиться к аналитику Обратиться к аналитику Бесплатный пример отчета Бесплатный пример отчета Узнать перед покупкой Узнать перед покупкой Купить сейчас Купить сейчас

Global Fraud Detection Transaction Monitoring Market Size, Share, and Trends Analysis Report – Industry Overview and Forecast to 2031

  • ICT
  • Upcoming Report
  • Feb 2025
  • Global
  • 350 Pages
  • Количество таблиц: 220
  • Количество рисунков: 60

Global Fraud Detection Transaction Monitoring Market

Размер рынка в млрд долларов США

CAGR :  % Diagram

Chart Image USD 20.54 Billion USD 99.80 Billion 2024 2032
Diagram Прогнозируемый период
2025 –2032
Diagram Размер рынка (базовый год)
USD 20.54 Billion
Diagram Размер рынка (прогнозируемый год)
USD 99.80 Billion
Diagram CAGR
%
Diagram Основные игроки рынка
  • Dummy1
  • Dummy2
  • Dummy3
  • Dummy4
  • Dummy5

Global Fraud Detection Transaction Monitoring Market Segmentation, By Offering (Solution and Services), Function (KYC/Customer Onboarding, Case Management, Watch List Screening, Dashboard & Reporting, and Others), Deployment (On-Premise and Cloud), Organization Size (Large size organizations and Small & Medium Sized Organization), Application (Payment Fraud Detection, Money Laundering Detection, Account Takeover Protection, Identity Theft Prevention, and Others), Vertical (Banking, Financial Services, & Insurance (BFSI), Retail, IT & Telecommunication, Government & Defense, Healthcare, Manufacturing, Energy & Utilities, and Others) - Industry Trends and Forecast to 2031.

Рынок мониторинга транзакций по обнаружению мошенничества

Fraud Detection Transaction Monitoring Market Analysis

Global fraud detection transaction monitoring market is experiencing robust growth due to increasing financial transactions and sophisticated cyber threats. Advanced technologies such as AI and machine learning are being integrated to enhance fraud detection accuracy and reduce false positives. Regulatory pressures and the need for compliance are driving adoption across industries. Key market players include companies specializing in cybersecurity and data analytics. The market is expected to continue expanding as businesses seek to protect themselves from evolving fraud tactics.

Рынок мониторинга транзакций по обнаружению мошенничестваРынок мониторинга транзакций по обнаружению мошенничества

Fraud Detection Transaction Monitoring Market Size

Global fraud detection transaction monitoring market is expected to reach a value of USD 81.91 billion by 2031 from 17.01 billion in 2023, growing at a CAGR of 21.8% during the forecast period 2024 to 2031. In addition to the market insights such as market value, growth rate, market segments, geographical coverage, market players, and market scenario, the market report curated by the Data Bridge Market Research team includes in-depth expert analysis, import/export analysis, pricing analysis, production consumption analysis, and PESTLE analysis.

Fraud Detection Transaction Monitoring Market Trends

‘Integration of Big Data’

The integration of big data in fraud detection allows organizations to analyze extensive datasets from various sources, enabling them to identify patterns that suggest fraudulent activities. By employing big data analytics, companies can uncover hidden insights that traditional methods might miss. Predictive analytics enhances this capability by using historical data to anticipate potential fraudulent behavior before it occurs. This trends not only improves detection rates but also allows organizations to implement preventative measures. Ultimately, harnessing big data transforms how businesses approach fraud prevention, making it more effective and responsive.

Report Scope and Fraud Detection Transaction Monitoring Market Segmentation

Report Metric

Fraud Detection Transaction Monitoring Key Market Insights

Segments Covered

  • By Offering: Solution and Services
  • By Function: KYC/Customer Onboarding, Case Management, Watch List Screening, Dashboard & Reporting, and Others
  • By Deployment: On-Premise and Cloud
  • By Organization Size: Large size organizations and Small & Medium Sized Organization
  • By Application: Payment Fraud Detection, Money Laundering Detection, Account Takeover Protection, Identity Theft Prevention, and Others
  • By Vertical: Banking, Financial Services, & Insurance (BFSI), Retail, IT & Telecommunication, Government & Defense, Healthcare, Manufacturing, Energy & Utilities and Others

Countries Covered

U.S., Canada, Mexico, Germany, U.K., France, Italy, Spain, Russia, Turkey, Netherlands, Norway, Finland, Denmark, Sweden, Poland, Switzerland, Belgium, Rest of Europe, China, Japan, India, South Korea, Australia, New Zealand, Indonesia, Thailand, Malaysia, Singapore, Philippines, Taiwan, Vietnam, Rest of Asia-Pacific, Brazil, Argentina, rest of South America, U.A.E., Saudi Arabia, South Africa, Egypt, Israel, Oman, Bahrain, Kuwait, Qatar, and rest of Middle East and Africa

Key Market Players

Amazon Web Services, Inc. (U.S.), LexisNexis (Subsidiary of Reed Elsevier) (U.S.), Mastercard (U.S.), TATA Consultancy Services Limited (India), Fiserv, Inc. (U.S.), SAS Institute Inc. (U.S.), ACI Worldwide (U.S.), Oracle (U.S.), NICE (Israel), FICO (U.S.), SymphonyAI (U.S.), UBIQUITY (U.S), Verafin Solutions ULC (Subsidiary of Nasdaq Inc.) (Canada), GB Group plc (‘GBG’) (U.K.), INFORM SOFTWARE (Germany), Quantexa (U.K.), Sum and Substance Ltd (U.K.), DataVisor, Inc. (U.S.), Hawk (Germany), Featurespace Limited (England), INETCO Systems Ltd. (Canada), Abra Innovations, Inc. (U.S.), Seon Technologies Ltd. (Hungary), Feedzai (Portugal), and Sanction Scanner (U.K.) among others

Market Opportunities

  • Utilizing AI and Machine Learning Algorithms to Enhance Accuracy
  • Collaborating with Fintech Companies and Technology Providers

Value Added Data

In addition to the market insights such as market value, growth rate, market segments, geographical coverage, market players, and market scenario, the market report curated by the Data Bridge Market Research team includes in-depth expert analysis, import/export analysis, pricing analysis, production consumption analysis, and PESTLE analysis

Fraud Detection Transaction Monitoring Market Definition

Fraud detection and transaction monitoring refer to the systems and processes used by financial institutions and businesses to identify and prevent fraudulent activities within transactions. These systems continuously analyze transaction data to detect unusual patterns or behaviors that may indicate fraud, such as unauthorized access, money laundering, or identity theft. The market for fraud detection and transaction monitoring solutions is driven by the increasing volume of online transactions, the complexity of fraud tactics, and stringent regulatory requirements aimed at reducing financial crimes. Organizations deploy advanced technologies such as AI, machine learning, and real-time analytics to enhance accuracy and efficiency in identifying fraudulent activities, ensuring compliance, and safeguarding assets.

Fraud Detection Transaction Monitoring Market Dynamics

Drivers

  • Rising need for Robust Detection Systems that can Adapt to New Threats

As financial fraud schemes continue to evolve and become more sophisticated, there is a rising need for robust fraud detection systems that can effectively adapt to new threats. Traditional fraud detection methods often struggle to keep pace with the rapid changes in fraud tactics, making it essential for financial institutions and businesses to implement advanced detection systems. These systems need to leverage cutting-edge technologies such as artificial intelligence and machine learning to analyze large volumes of transaction data in real time, identifying patterns and anomalies that may indicate fraudulent activity.

For Instances,

In February 2024, according blog published by the Bill & Melinda Gates Foundation, Tazama, a new open-source fraud detection software, was launched to help monitor financial transactions for fraud and money laundering. This software aims to support financial inclusion by providing a cost-effective solution for low- and middle-income countries, which often struggle with expensive commercial fraud protection systems. Tazama allows central banks and financial institutions to protect their customers better and ensure transaction integrity. The software's open-source nature enables global collaboration to improve its capabilities, addressing the rising need for robust detection systems that adapt to evolving threats.

  • Increased Focus on Identity Verification and Authentication

Heightened emphasis on identity verification and authentication is transforming the landscape of fraud detection and transaction monitoring. By incorporating advanced technologies such as biometric authentication, multi-factor verification, and AI-driven identity analysis, financial institutions can more accurately verify user identities and detect fraudulent activities. This robust approach helps mitigate risks associated with unauthorized access and fraudulent transactions, enhancing the overall security and reliability of financial systems. As identity verification technologies evolve, they will play a crucial role in strengthening fraud detection mechanisms and ensuring the integrity of transaction monitoring processes.

For instance,

In November 2023, Westpac NZ adopted advanced biometrics software from Israel-based cybersecurity company BioCatch to enhance its fraud detection systems. The technology analyzed customers' online behavior, such as typing speed and touch screen pressure, to detect unusual activities and prevent fraud. Westpac began implementing BioCatch in September, with plans for full operation by the end of the month. The bank reported preventing tens of millions of dollars in fraud over the past year, highlighting its increased focus on identity verification and authentication as scams grow more sophisticated.

Рынок мониторинга транзакций по обнаружению мошенничества

Opportunities

  • Utilizing AI and Machine Learning Algorithms to Enhance Accuracy

Leveraging AI and machine learning algorithms significantly improves the accuracy of fraud detection and transaction monitoring. These technologies enable systems to analyze vast amounts of data in real time, identifying complex patterns and anomalies that traditional methods might miss. By continuously learning from new data, AI algorithms adapt and refine their detection capabilities, reducing false positives and improving the precision of fraud alerts.

Moreover, AI and machine learning enhance the ability to recognize emerging fraud trends and sophisticated schemes. This dynamic adaptability ensures that monitoring systems stay ahead of evolving threats, providing more reliable and effective protection against financial crimes. As a result, financial institutions can achieve a higher level of security and operational efficiency, benefiting from advanced, automated solutions that scale with their needs.

For instance,

In June 2023, Oscilar launched its AI-powered ACH Fraud Detection solution, designed to enhance the accuracy of fraud prevention in the rapidly expanding ACH Network. The solution utilizes advanced machine learning algorithms and generative AI to identify and prevent fraudulent transactions with high precision. This is particularly important as ACH credit fraud increased by 6% from 2021 to 2023, highlighting the need for more effective fraud detection. Oscilar’s technology addresses the limitations of traditional methods, which often struggle to keep pace with evolving fraud tactics, offering a more robust and timely defense against sophisticated fraudulent activities.

  • Collaborating with Fintech Companies and Technology Providers

Collaborating with fintech companies and technology providers allows financial institutions to leverage advanced technologies and innovative solutions for enhanced fraud detection. These partnerships enable the integration of cutting-edge tools and expertise, facilitating the development of more sophisticated fraud detection systems. By working together, banks and fintech firms can harness the latest advancements in AI, machine learning, and data analytics to improve accuracy, reduce false positives, and better protect against fraudulent activities.

For instance,

In December 2023, Treasury Prime partnered with Effectiv to enhance fraud detection for banks and fintechs. The collaboration allows Treasury Prime’s network to use Effectiv's advanced Transaction Monitoring solution, which employs AI to identify and mitigate fraudulent transactions in real time. This partnership helps financial institutions reduce financial losses and reputational damage by integrating sophisticated fraud prevention tools. The move underscores the importance of collaborating with fintech companies and technology providers to strengthen fraud detection and risk management in a rapidly evolving financial landscape.

Restraint/Challenge

  • High Volume of Transactions Increases Detection Complexity

Managing a high volume of transactions presents significant challenges in fraud detection. As the number of transactions rises, so does the complexity of identifying fraudulent activities amidst legitimate ones. Traditional methods struggle to keep pace, often missing subtle patterns or generating false positives, leading to inefficiencies and increased risks.

Furthermore, the sheer volume of data requires robust systems capable of processing and analyzing information in real-time. Without advanced technology, financial institutions may find it difficult to effectively monitor transactions, leaving them vulnerable to sophisticated fraud schemes that can slip through the cracks.

For instances,

В июне 2024 года, согласно статье, опубликованной корпорацией NVIDIA, American Express ускорила обнаружение мошенничества с помощью моделей долговременной краткосрочной памяти (LSTM) на базе ИИ. Используя параллельные вычисления на графических процессорах, компания быстро обработала и проанализировала огромные объемы транзакционных данных, обеспечив обнаружение мошенничества в реальном времени. Этот подход помог American Express справиться со сложностями, возникающими из-за большого объема транзакций. Интеграция ускоренных вычислений и ИИ повысила их способность быстро обнаруживать аномалии, повысив операционную эффективность и сократив потенциальные потери из-за мошенничества.

  • Высокие первоначальные инвестиции и текущие расходы на техническое обслуживание

Высокие первоначальные инвестиции и текущие расходы на обслуживание представляют собой существенные ограничения для внедрения современных систем обнаружения мошенничества. Эти финансовые трудности могут удерживать небольшие учреждения от внедрения передовых технологий, что потенциально делает их уязвимыми для мошенничества. Значительные расходы, связанные как с настройкой, так и с постоянным обслуживанием таких систем, могут истощить бюджеты и усложнить процесс принятия решений для учреждений, рассматривающих расширенные решения по мониторингу транзакций.

Например,

Несколько компаний демонстрируют значительные первоначальные инвестиции и текущие расходы на обслуживание. GLAnalytics требует годовой сбор в размере 8000 долларов США, в то время как CertifID начинается с 150 долларов США в месяц плюс 10 долларов США за транзакцию. Модули Credolab стоят от 600 до 1000 долларов США в месяц. Эти высокие расходы могут отпугнуть организации от принятия или поддержки этих услуг.

В этом отчете о рынке содержатся сведения о последних новых разработках, правилах торговли, анализе импорта-экспорта, анализе производства, оптимизации цепочки создания стоимости, доле рынка, влиянии внутренних и локальных игроков рынка, анализируются возможности с точки зрения новых источников дохода, изменений в правилах рынка, анализ стратегического роста рынка, размер рынка, рост рынка категорий, ниши приложений и доминирование, одобрения продуктов, запуски продуктов, географические расширения, технологические инновации на рынке. Чтобы получить больше информации о рынке, свяжитесь с Data Bridge Market Research для получения аналитического обзора, наша команда поможет вам принять обоснованное рыночное решение для достижения роста рынка.

Обнаружение мошенничества Мониторинг транзакций Рынок Сфера

Глобальный рынок мониторинга транзакций обнаружения мошенничества сегментирован на шесть заметных сегментов на основе предложения, функции, режима развертывания, размера организации, применения и вертикали. Рост среди этих сегментов поможет вам проанализировать сегменты с незначительным ростом в отраслях и предоставить пользователям ценный обзор рынка и рыночные идеи, которые помогут им принимать стратегические решения для определения основных рыночных приложений.

Предложение

  • Решение
  • Услуги
    • Профессиональное обслуживание
      • Поддержка и обслуживание
      • Интеграционные услуги
      • Консалтинговые услуги
      • Обучение и образование
    • Управляемая услуга

Функция

  • KYC/Привлечение клиентов
  • Управление кейсами
  • Проверка списка наблюдения
  • Панель управления и отчетность
  • Другие

Режим развертывания

  • Локально
  • Облако

Размер организации

  • Малые и средние организации
    • Облако
    • Локально
  • Крупные организации
    • Облако
    • Локально

Приложение

  • Обнаружение мошенничества с платежами
  • Обнаружение отмывания денег
  • Защита от захвата аккаунта
  • Предотвращение кражи личных данных
  • Другие

Вертикальный

  • Банковское дело, финансовые услуги и страхование (BFSI)
    • Решение
    • Услуги
  • Розничная торговля
    • Решение
    • Услуги
  • ИТ и телекоммуникации
    • Решение
    • Услуги
  • Правительство и оборона
    • Решение
    • Услуги
  •  Здравоохранение
    • Решение
    • Услуги
  • Производство
    • Решение
    • Услуги
  • Энергетика и коммунальные услуги
    • Решение
    • Услуги
  • Другие
    • Решение
    • Услуги

Рынок мониторинга транзакций по обнаружению мошенничества

Обнаружение мошенничества Мониторинг транзакций Анализ регионального рынка

Анализируется рынок, и предоставляются сведения о размерах рынка и тенденциях по предложению, функции, режиму развертывания, размеру организации, области применения и вертикали, как указано выше.

Страны, охваченные рынком: США, Канада, Мексика, Германия, Великобритания, Франция, Италия, Испания, Россия, Турция, Нидерланды, Норвегия, Финляндия, Дания, Швеция, Польша, Швейцария, Бельгия, остальные страны Европы, Китай, Япония, Индия, Южная Корея, Австралия, Новая Зеландия, Индонезия, Таиланд, Малайзия, Сингапур, Филиппины, Тайвань, Вьетнам, остальные страны Азиатско-Тихоокеанского региона, Бразилия, Аргентина, остальные страны Южной Америки, ОАЭ, Саудовская Аравия, Южная Африка, Египет, Израиль, Оман, Бахрейн, Кувейт, Катар и остальные страны Ближнего Востока и Африки.

Северная Америка является доминирующим и самым быстрорастущим регионом на мировом рынке мониторинга транзакций по выявлению мошенничества благодаря развитой технологической инфраструктуре региона, широкому внедрению цифровых платежных систем и значительному присутствию крупных финансовых учреждений.

Раздел отчета по странам также содержит отдельные факторы, влияющие на рынок, и изменения в регулировании на внутреннем рынке, которые влияют на текущие и будущие тенденции рынка. Такие данные, как новые продажи, заменяющие продажи, демографические данные страны, нормативные акты и импортно-экспортные тарифы, являются одними из основных указателей, используемых для прогнозирования рыночного сценария для отдельных стран. Кроме того, при предоставлении прогнозного анализа данных по стране учитываются наличие и доступность глобальных брендов и их проблемы, связанные с большой или малой конкуренцией со стороны местных и отечественных брендов, а также влияние каналов продаж.

Рынок мониторинга транзакций по обнаружению мошенничества

Обнаружение мошенничества Мониторинг транзакций Доля рынка

Глобальная конкурентная среда рынка мониторинга транзакций обнаружения мошенничества предоставляет сведения о конкурентах. Включены сведения о компании, финансах компании, полученном доходе, рыночном потенциале, инвестициях в НИОКР, новых рыночных инициативах, производственных площадках и объектах, сильных и слабых сторонах компании, запуске продукта, одобрении продукта, широте и широте продукта, доминировании приложений и жизненно важной кривой типа продукта. Приведенные выше данные относятся только к фокусу компании на рынке.

Лидерами рынка мониторинга транзакций по выявлению мошенничества являются:

  • Amazon Web Services, Inc. (США)
  • LexisNexis (дочерняя компания Reed Elsevier) (США)
  • Мастеркард (США)
  • TATA Consultancy Services Limited (Индия)
  • Fiserv, Inc. (США)
  • Институт SAS Inc. (США)
  • ACI Worldwide (США)
  • Оракул (США)
  • НИЦЦА (Израиль)
  • ФИКО (США)
  • SymphonyAI (США)
  • ВСЕОБЩЕСТВО (США)
  • Verafin Solutions ULC (дочерняя компания Nasdaq Inc.) (Канада)
  • GB Group plc («GBG») (Великобритания)
  • INFORM SOFTWARE (Германия)
  • Квантекса (Великобритания)
  • Sum and Substance Ltd (Великобритания)
  • DataVisor, Inc. (США)
  • Ястреб (Германия)
  • Featurespace Limited (Англия)
  • INETCO Systems Ltd. (Канада)
  • Abra Innovations, Inc. (США)
  • Seon Technologies Ltd. (Венгрия)
  • Feedzai (Португалия)
  • Сканер санкций (Великобритания)

Последние разработки на рынке мониторинга транзакций для обнаружения мошенничества

  • В июне 2024 года, согласно статье, опубликованной корпорацией NVIDIA, American Express ускорила обнаружение мошенничества с помощью моделей краткосрочной памяти (LSTM) на базе искусственного интеллекта. Используя параллельные вычисления на графических процессорах, компания быстро обработала и проанализировала огромные объемы транзакционных данных, обеспечив обнаружение мошенничества в режиме реального времени. Этот подход помог American Express справиться со сложностями, возникающими из-за большого объема транзакций. Интеграция ускоренных вычислений и искусственного интеллекта повысила их способность быстро обнаруживать аномалии, повысив операционную эффективность и сократив потенциальные потери из-за мошенничества.
  • В июле 2023 года, согласно блогу, опубликованному BluEnt, компании столкнулись с возросшими трудностями в обнаружении мошенничества из-за большого объема транзакций. Передовые технологии и автоматизированные системы были внедрены для анализа больших наборов данных и выявления высокорисковых тенденций и аномалий. Несмотря на трудности управления неструктурированными данными, где происходит большинство случаев мошенничества, аналитика данных о финансовых преступлениях позволила эффективно просматривать как структурированные, так и неструктурированные данные. Такой подход помог предотвратить мошеннические действия и интегрировать различные источники данных для улучшения обнаружения
  • В июне 2024 года ACI Worldwide и RS2 запустили комплексное платежное решение в Бразилии, объединив свои технологии эквайринга и эмиссии. Эта облачная платформа позволила финансовым учреждениям и поставщикам платежных услуг эффективно внедрять новые продукты и услуги, повышая безопасность и сокращая расходы. Интеграция передового управления мошенничеством и аналитики в реальном времени принесла компаниям пользу, расширив их рыночный охват и увеличив возможности получения дохода
  • В октябре 2023 года ACI Worldwide заключила партнерство с Nymcard с целью расширения возможностей по борьбе с мошенничеством и отмыванием денег. Это партнерство позволило Nymcard быстро и эффективно обнаруживать и предотвращать финансовое мошенничество с помощью передового машинного обучения и аналитики. Развертывание через публичное облако ACI улучшило масштабируемость, безопасность и операционную эффективность, значительно укрепив позиции Nymcard на рынке MENA
  • В июне 2024 года DataVisor, Inc. расширила свои возможности многопользовательской аренды для предоставления масштабируемых, безопасных и гибких решений по предотвращению мошенничества и AML. Обновление позволило организациям настраивать стратегии по предотвращению мошенничества и AML и развертывать их среди субарендаторов с такими функциями, как модели машинного обучения и бизнес-правила. Эти усовершенствования помогли банкам-спонсорам обеспечить соответствие требованиям и позволили крупным финансовым учреждениям централизовать данные, предлагая принятие решений по субаренде. Это развитие принесло пользу DataVisor, укрепив ее рыночные позиции и увеличив внедрение ее решений среди банковских и финансовых учреждений, повысив удовлетворенность и удержание клиентов.


SKU-

Get online access to the report on the World's First Market Intelligence Cloud

  • Интерактивная панель анализа данных
  • Панель анализа компании для возможностей с высоким потенциалом роста
  • Доступ аналитика-исследователя для настройки и запросов
  • Анализ конкурентов с помощью интерактивной панели
  • Последние новости, обновления и анализ тенденций
  • Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Запросить демонстрацию

Методология исследования

Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.

Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.

Доступна настройка

Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.

Часто задаваемые вопросы

Рынок сегментирован на основе Segmentation, By Offering (Solution and Services), Function (KYC/Customer Onboarding, Case Management, Watch List Screening, Dashboard & Reporting, and Others), Deployment (On-Premise and Cloud), Organization Size (Large size organizations and Small & Medium Sized Organization), Application (Payment Fraud Detection, Money Laundering Detection, Account Takeover Protection, Identity Theft Prevention, and Others), Vertical (Banking, Financial Services, & Insurance (BFSI), Retail, IT & Telecommunication, Government & Defense, Healthcare, Manufacturing, Energy & Utilities, and Others) - Industry Trends and Forecast to 2031. .
Размер Global Fraud Detection Transaction Monitoring Market в 2024 году оценивался в 20.54 USD Billion долларов США.
Ожидается, что Global Fraud Detection Transaction Monitoring Market будет расти со среднегодовым темпом роста (CAGR) 2.18% в течение прогнозируемого периода 2025–2032.
Отчет по рынку охватывает данные из U.S., Canada, Mexico, Germany, U.K., France, Italy, Spain, Russia, Turkey, Netherlands, Norway, Finland, Denmark, Sweden, Poland, Switzerland, Belgium, Rest of Europe, China, Japan, India, South Korea, Australia, New Zealand, Indonesia, Thailand, Malaysia, Singapore, Philippines, Taiwan, Vietnam, Rest of Asia-Pacific, Brazil, Argentina, rest of South America, U.A.E., Saudi Arabia, South Africa, Egypt, Israel, Oman, Bahrain, Kuwait, Qatar, and rest of Middle East and Africa.
Testimonial