Отчет об анализе размера, доли и тенденций мирового рынка обработки данных — обзор отрасли и прогноз до 2032 года

Запрос на TOC Запрос на TOC Обратиться к аналитику Обратиться к аналитику Бесплатный пример отчета Бесплатный пример отчета Узнать перед покупкой Узнать перед покупкой Купить сейчас Купить сейчас

Отчет об анализе размера, доли и тенденций мирового рынка обработки данных — обзор отрасли и прогноз до 2032 года

  • ICT
  • Upcoming Report
  • Apr 2025
  • Global
  • 350 Pages
  • Количество таблиц: 220
  • Количество рисунков: 60

Global Data Wrangling Market

Размер рынка в млрд долларов США

CAGR :  % Diagram

Chart Image 2022 2029
Diagram Прогнозируемый период
2023 –2029
Diagram Размер рынка (базовый год)
МИЛЛИОН ДОЛЛАРОВ США
Diagram Размер рынка (прогнозируемый год)
МИЛЛИОН ДОЛЛАРОВ США
Diagram CAGR
%
Diagram Основные игроки рынка
  • Trifacta
  • Datawatch Systems Inc.
  • Dataiku
  • IBM
  • SAS Institute Inc.

Глобальный рынок обработки данных по бизнес-функциям (финансы, маркетинг и продажи, операции, человеческие ресурсы и юриспруденция), компонентам (инструменты и услуги), модели развертывания (локально и в облаке), размеру организации (крупные предприятия, малые и средние предприятия), отраслевой вертикали (банковское дело, финансовые услуги и страхование, государственный и общественный сектор, здравоохранение и науки о жизни, розничная торговля и электронная коммерция, путешествия и гостиничный бизнес, автомобилестроение и транспорт, энергетика и коммунальные услуги, телекоммуникации и ИТ, производство и другие) — отраслевые тенденции и прогноз до 2032 г.

Рынок обработки данных

Размер рынка обработки данных

  • Рынок обработки данных оценивался в 3,0 млрд долларов США в 2024 году  и, как ожидается, достигнет 6,6 млрд долларов США к 2032 году.
  • В прогнозируемый период с 2025 по 2032 год среднегодовой темп роста рынка, вероятно, составит 10,7%,  в основном за счет высокой оптимизации исследований и роста в развивающихся секторах.
  • Рост обусловлен растущим внедрением автоматизации на базе искусственного интеллекта, которая повышает эффективность подготовки данных и сокращает ручные усилия.

Анализ рынка обработки данных

  • Обработка данных все чаще применяется в таких отраслях, как финансы, здравоохранение, розничная торговля и телекоммуникации, для оптимизации обработки данных, улучшения процесса принятия решений и повышения операционной эффективности.
  • Достижения в области искусственного интеллекта, машинного обучения и автоматизации кардинально меняют обработку данных, обеспечивая более быструю и точную подготовку данных для аналитики, бизнес-аналитики и прогнозного моделирования.
  • Организации переходят от ручной очистки данных к автоматизированным решениям по обработке данных, чтобы справиться с растущей сложностью данных и улучшить масштабируемость в облачных средах и средах больших данных.
  • Инструменты обработки данных в режиме реального времени предоставляют полезную информацию за счет интеграции структурированных и неструктурированных источников данных, предоставляя компаниям возможность более точного прогнозирования, персонализированных услуг и более высокой рентабельности инвестиций в стратегии, основанные на данных.
  • Прогнозируется, что Северная Америка будет доминировать на рынке обработки данных в течение прогнозируемого периода в связи с растущим внедрением услуг по обработке данных, а также в связи с тем, что данные, собираемые ежедневно, увеличили спрос на обработку данных в больших масштабах.

Область отчета и обработка данных Сегментация рынка

Атрибуты

Рынок обработки данных. Ключевые идеи рынка

Охваченные сегменты

  • By Business Function: Finance, Marketing and Sales, Operations, Human Resources and Legal
  • By Component: Tools and Services
  • BY Deployment Model:  On-Premises and Cloud
  • By Organization Size: Large Enterprises and Small and Medium-Sized Enterprises
  • By Industry Vertical : Banking, Financial Services, and Insurance, Government and Public Sector, Healthcare and Life Sciences, Retail and Ecommerce, Travel and Hospitality, Automotive and Transportation, Energy and Utilities, Telecommunication and IT, Manufacturing and Others

Countries Covered

North America

  • U.S.
  • Canada
  • Mexico

Europe

  • Germany
  • France
  • U.K.
  • Netherlands
  • Switzerland
  • Belgium
  • Russia
  • Italy
  • Spain
  • Turkey
  • Rest of Europe

Asia-Pacific

  • China
  • Japan
  • India
  • South Korea
  • Singapore
  • Malaysia
  • Australia
  • Thailand
  • Indonesia
  • Philippines
  • Rest of Asia-Pacific

Middle East and Africa

  • Saudi Arabia
  • U.A.E.
  • South Africa
  • Egypt
  • Israel
  • Rest of Middle East and Africa

South America

  • Brazil
  • Argentina

Rest of South America

Key Market Players

  • Trifacta (U.S.)
  • Datawatch Systems Inc. (U.S.)
  • Dataiku (France)
  • IBM (U.S.)
  • SAS Institute Inc. (U.S.)
  • Oracle (U.S.)
  • Talend (France)
  • Alteryx Inc. (U.S.)
  • TIBCO Software Inc. (U.S.)
  • Paxata Inc. (U.S.)
  • Informatica (U.S.)
  • Hitachi Vantara Corporation (Japan)
  • Teradata (U.S.)
  • Datameer (U.S.)
  • Cooladata (Israel)
  • Ubiquiti Inc. (U.S.)
  • Rapid Insight (U.S.)
  • Infogix Inc. (U.S.)
  • Zaloni (U.S.)
  • Impetus Technologies Inc. (U.S.)
  • Ideata Analytics (India)
  • Onedot AG (Switzerland)
  • IRI (U.S.)
  • Brillio (U.S.)
  • TMMData (U.S.)

Market Opportunities

  • Leverage AI and machine learning to automate data cleaning.
  • Enable real-time data wrangling capabilities for instant insights.

Value Added Data Info sets

In addition to the market insights such as market value, growth rate, market segments, geographical coverage, market players, and market scenario, the market report curated by the Data Bridge Market Research team includes in-depth expert analysis, import/export analysis, pricing analysis, production consumption analysis, PORTER analysis, and PESTLE analysis.

Data Wrangling Market Trends

“Growing Adoption of Cloud-Based Data Wrangling Solutions”

  • Cloud-based data wrangling solutions dynamically scale to handle massive datasets, ensuring high-speed processing, efficient resource allocation, and uninterrupted workflows across distributed data environments. Businesses reduce IT infrastructure expenses while enhancing accessibility, as cloud solutions enable real-time collaboration, automated updates, and seamless integration with AI-driven analytics tools for smarter decision-making
  • Robust encryption, access controls, and compliance frameworks ensure data integrity and protection, helping organizations meet industry regulations while securely managing structured and unstructured data across cloud ecosystems.
  •  Облачная обработка данных обеспечивает мгновенное преобразование данных, бесшовную интеграцию с большими данными, Интернетом вещей и аналитикой на базе искусственного интеллекта для более быстрого получения информации и улучшения возможностей бизнес-аналитики.

Например,

  • В апреле 2025 года, согласно блогу, опубликованному Forbes Media LLC, Google Cloud Next 2025, запланированный на следующую неделю в Лас-Вегасе, выделит достижения в обработке данных на основе ИИ, облачных вычислениях и аналитике. Ожидайте инноваций, таких как базы данных на базе Gemini и инструменты управления данными с улучшенным ИИ, демонстрирующие стратегию Google по интеграции облачных, ИИ и решений для обработки данных в различных отраслях. Мероприятие также будет сосредоточено на расширении прав и возможностей разработчиков и расширении талантов в области ИИ, что усилит конкурентное преимущество Google в облачных технологиях
  • Кроме того, используя машинное обучение и искусственный интеллект, облачные платформы автоматизируют очистку, дедупликацию и преобразование данных, сокращая количество ручных ошибок, повышая точность и оптимизируя рабочие процессы обработки данных для более эффективного принятия решений.

Динамика рынка обработки данных

Водитель

«Растущее внедрение ИИ и автоматизации в обработке данных»

  •  Растущее внедрение ИИ и автоматизации в обработку данных существенно стимулирует рынок обработки данных, повышая эффективность и точность. Традиционные методы обработки данных часто требуют много времени и подвержены человеческим ошибкам, что делает автоматизацию на основе ИИ переломным моментом. Используя алгоритмы машинного обучения, компании могут автоматизировать очистку, преобразование и интеграцию данных, сокращая ручные усилия и одновременно повышая качество данных.
  • Автоматизация на базе ИИ позволяет обрабатывать данные в режиме реального времени, позволяя компаниям мгновенно извлекать информацию и быстрее принимать решения на основе данных. Такие отрасли, как финансы, здравоохранение и розничная торговля, все больше полагаются на аналитику в режиме реального времени для обнаружения мошенничества, прогнозного моделирования и персонализированного обслуживания клиентов. Автоматизированные инструменты обработки данных помогают в постоянном уточнении наборов данных, обеспечивая согласованность и надежность при интеграции с аналитическими платформами на основе ИИ.

Например,

В апреле 2025 года технический директор Bloomberg Шон Эдвардс сообщил, что ИИ может оптимизировать 80% рабочей нагрузки аналитиков, значительно повысив производительность. В интервью Financial News он подчеркнул, как генеративный ИИ может повысить эффективность исследований, особенно при обработке неструктурированных данных. Гигант рыночных данных разрабатывает инструменты на основе ИИ, чтобы произвести революцию в младших банковских ролях, потенциально увеличивая производительность в десять раз в определенных областях, изменяя финансовые исследования и анализ.

Возможность

«Растущая потребность в решениях по управлению данными и обеспечению соответствия»

  • Растущая потребность в управлении данными и соблюдении требований стимулирует спрос на рынке обработки данных. С такими правилами, как GDPR и CCPA, компании должны гарантировать точность, безопасность и прослеживаемость данных.
  • Такие секторы, как финансы, здравоохранение и правительство, используют передовые инструменты обработки данных для стандартизации данных, поддержки аудита и предотвращения несанкционированного доступа. Автоматизация на основе ИИ улучшает отслеживание происхождения данных и соответствие меняющимся правилам.
  • Поскольку компании внедряют облачные и гибридные среды, встроенные средства управления, шифрования и контроля доступа в инструментах обработки данных становятся необходимыми для управления рисками несоответствия.

Например,

  • В феврале 2025 года COMPLY представила свою инновационную дорожную карту 2025 года, в которой особое внимание уделяется автоматизации соответствия требованиям и управлению данными на основе ИИ. Новая панель инструментов Employee360 обеспечивает руководителей по соблюдению требований в режиме реального времени для надзора за рисками сотрудников и нормативными обязательствами. С ростом сложности регулирования это подчеркивает растущий спрос на решения по управлению данными и соблюдению требований, создавая ключевую возможность для рынка обработки данных для оптимизации управления нормативными данными, повышения точности и автоматизации процессов соответствия для компаний, предоставляющих финансовые услуги.
  • Растущее внимание к управлению данными и соответствию позиционирует обработку данных как критически важную возможность для организаций. Современные инструменты обработки данных не только оптимизируют подготовку данных, но и обеспечивают соответствие нормативным требованиям с помощью встроенных функций проверки и безопасности

Сдержанность/Вызов

«Нехватка квалифицированных специалистов в области обработки данных и автоматизации»

  • Быстрый рост принятия решений на основе данных увеличил спрос на квалифицированных специалистов по обработке данных. Однако наблюдается существенная нехватка экспертов, владеющих навыками обработки сложных преобразований данных, автоматизации на основе ИИ и соответствия нормативным требованиям. Многие организации испытывают трудности в поиске квалифицированных специалистов, способных эффективно управлять, очищать и структурировать большие и неструктурированные наборы данных.
  • Обработка данных требует экспертных знаний в различных областях, включая инжиниринг данных, ИИ и машинное обучение. Сложность интеграции этих областей затрудняет поиск профессионалов с нужным набором навыков.
  • Соответствие развивающимся нормам конфиденциальности данных, таким как GDPR и CCPA, добавляет еще один уровень сложности к обработке данных. Компаниям требуются специалисты, которые могут обеспечить управление данными, поддерживая стандарты безопасности. Нехватка специалистов по соблюдению требований с опытом обработки данных увеличивает риск нарушений нормативных требований, что приводит к юридическим и финансовым последствиям.

Например,

  •  В августе 2024 года, согласно новостям PRNewswire, отчет Multiverse показал, что пробелы в навыках работы с данными обходятся компаниям в 26 рабочих дней на одного сотрудника ежегодно из-за неэффективности обработки данных. Проанализировав 12 000 сотрудников в 18 отраслях в США и Великобритании, исследование показало, что работники тратят 36% своей недели на задачи по работе с данными, при этом 4,34 часа теряются из-за неэффективности. Результаты подчеркивают острую необходимость в повышении грамотности в области данных, автоматизации и навыков предиктивного моделирования в рабочей силе
  • The shortage of skilled experts in data wrangling and automation poses a challenge for organizations aiming to manage complex data efficiently. This gap drives the need for user-friendly, AI-powered tools that reduce manual effort

Data wrangling Market Scope

The market is segmented into five notable segments based on business function, component, deployment model, organization size and industry vertical.

Segmentation

Sub-Segmentation

By Business Function 

  • Finance
  • Marketing and Sales
  • Operations
  • Human Resources
  • Legal

By Component

  • Tools
  • Services

BY Deployment Model

  • On-Premises
  • Cloud

By Organization Size

  • Large Enterprises
  • Small Medium-Sized Enterprises

By Industry Vertical

  • Banking
  • Financial Services, and Insurance
  • Government and Public Sector
  • Healthcare and Life Sciences
  • Retail and Ecommerce
  • Travel and Hospitality
  • Automotive and Transportation
  • Energy and Utilities
  • Telecommunication and IT
  • Manufacturing
  • Others

Data wrangling Market Country Analysis

“North America Is A Dominant Region In The Global Data Wrangling Market”

  •  North America leads the global data wrangling market due to early adoption of AI, machine learning, and automation tools, enabling businesses to streamline data processing and analytics.
  • The region is home to global tech leaders such as IBM, Microsoft, Google, and Amazon, which continuously innovate and expand data management solutions. Venture capital funding and corporate investments in AI-powered data processing startups are also fueling market growth.
  • Additionally, collaborations between enterprises and AI research institutions enable the development of more sophisticated data wrangling tools tailored to industry-specific needs.

“Asia-Pacific is Projected to Register the Highest Growth Rate”

  • The Asia-Pacific region is undergoing rapid digital transformation, with industries adopting AI-driven analytics and automation. Surging investments in cloud infrastructure and data solutions are boosting demand for efficient data wrangling tools.
  • The growth of e-commerce, fintech, and smart cities is generating large volumes of unstructured data, driving the need for advanced wrangling capabilities. Countries like China, India, and Japan are prioritizing real-time data processing to gain competitive insights.
  • Stricter data protection laws, including China’s PIPL and India’s DPDP Act, are pushing enterprises to adopt data wrangling tools that ensure compliance, accuracy, and streamlined regulatory reporting.

Data Wrangling Market Share

The market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies' focus related to market.

The Major Market Leaders Operating in the Market Are:

  • Trifacta (U.S.)
  • Datawatch Systems Inc. (U.S.)
  • Dataiku (France)
  • IBM (U.S.)
  • SAS Institute Inc. (U.S.)
  • Oracle (U.S.)
  • Talend (France)
  • Alteryx Inc. (U.S.)
  • TIBCO Software Inc. (U.S.)
  • Paxata Inc. (U.S.)
  • Informatica (U.S.)
  • Hitachi Vantara Corporation (Japan)
  • Teradata (U.S.)
  • Datameer (U.S.)
  • Cooladata (Israel)
  • Ubiquiti Inc. (U.S.)
  • Rapid Insight (U.S.)
  • Infogix Inc. (U.S.)
  • Zaloni (U.S.)
  • Impetus Technologies Inc. (U.S.)
  • Ideata Analytics (India)
  • Onedot AG (Switzerland)
  • IRI (U.S.)
  • Brillio (U.S.)
  • TMMData (U.S.) 

Latest Developments in data wrangling Market

In October 2024, DataPelago has launched a Universal Data Processing Engine to accelerate any engine on any hardware for GenAI and analytics workloads. Backed by $47 million in funding, it tackles growing data complexity and unstructured data challenges. The engine redefines data processing efficiency, overcoming cost and scalability limits. CEO Rajan Goyal highlights its ability to unlock breakthrough intelligence by processing massive, complex datasets across various formats in the accelerated computing era.

In April 2025, Deutsche Telekom has expanded its partnership with Google Cloud, making it the backbone of its 'One Data Ecosystem' to streamline data systems, improve processing speed, and ensure regulatory compliance. The collaboration supports Deutsche Telekom's AI-first transformation, enhancing operations and customer experience through AI-driven solutions like the Gemini assistant in the MyMagenta app. Google Cloud will also power Deutsche Telekom’s new AI platform, driving innovation and flexibility for better user experiences.

In February 2025, the Netherlands' privacy watchdog, AP, announced an investigation into Chinese AI firm DeepSeek over concerns about its data collection practices and privacy policies. The investigation follows Italy's ban of DeepSeek's app, and other EU nations like Ireland and France are seeking information on its data handling. This raises critical concerns for the data wrangling market, as strict data privacy regulations in the EU emphasize the importance of secure and compliant data processing practices, impacting global AI and data analytics firms.

  • In February 2025, COMPLY has unveiled its 2025 Innovation Roadmap, emphasizing AI-driven compliance automation and data governance. Its new Employee360 dashboard provides Chief Compliance Officers with real-time oversight of employee risks and regulatory obligations. With growing regulatory complexity, this highlights the rising demand for data governance and compliance solutions—creating a key opportunity for the data wrangling market to streamline regulatory data management, enhance accuracy, and automate compliance processes for financial services firms.
  • В июне 2024 года Cloudera представила трех помощников на базе ИИ, которые помогут клиентам ускорить разработку данных, аналитики и приложений ИИ. Один помощник, Cloudera Copilot для Cloudera Machine Learning, использует предварительно обученных LLM для помощи в решении таких задач, как подготовка данных и развертывание моделей. 

SKU-

Get online access to the report on the World's First Market Intelligence Cloud

  • Интерактивная панель анализа данных
  • Панель анализа компании для возможностей с высоким потенциалом роста
  • Доступ аналитика-исследователя для настройки и запросов
  • Анализ конкурентов с помощью интерактивной панели
  • Последние новости, обновления и анализ тенденций
  • Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Запросить демонстрацию

Методология исследования

Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.

Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.

Доступна настройка

Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.

Часто задаваемые вопросы

Рынок сегментирован на основе Глобальный рынок обработки данных по бизнес-функциям (финансы, маркетинг и продажи, операции, человеческие ресурсы и юриспруденция), компонентам (инструменты и услуги), модели развертывания (локально и в облаке), размеру организации (крупные предприятия, малые и средние предприятия), отраслевой вертикали (банковское дело, финансовые услуги и страхование, государственный и общественный сектор, здравоохранение и науки о жизни, розничная торговля и электронная коммерция, путешествия и гостиничный бизнес, автомобилестроение и транспорт, энергетика и коммунальные услуги, телекоммуникации и ИТ, производство и другие) — отраслевые тенденции и прогноз до 2032 г. .
Размер Отчет об анализе размера, доли и тенденций мирового рынка обработки данных — обзор отрасли и прогноз до 2032 года в 2022 году оценивался в 0.00 USD Billion долларов США.
Ожидается, что Отчет об анализе размера, доли и тенденций мирового рынка обработки данных — обзор отрасли и прогноз до 2032 года будет расти со среднегодовым темпом роста (CAGR) 9.65% в течение прогнозируемого периода 2023–2029.
Основные участники рынка включают Trifacta, Datawatch Systems Inc., Dataiku, IBM, SAS Institute Inc..
Отчет по рынку охватывает данные из North America.
Testimonial